

20 October 2025

Maiden Currajong MRE increases Rimfire Scandium resources by 61%

Highlights

- Maiden Scandium (Sc) Inferred Mineral Resource estimated for the Currajong Prospect of;
 - 15.1Mt @ 137ppm Sc (210ppm Sc Oxide) 2,059t Sc (3,163t Sc Oxide)
- Currajong remains open with further drilling recommended to determine lateral and vertical extents of the Mineral Resource
- Rimfire's Scandium Resource Inventory now stands at 5,449t Sc (8,333t Sc Oxide)
- Significant scandium upside offered by the separate Murga Exploration Target and Rabbit Trap Project
- Air core drilling at Murga Exploration Target followed by Rabbit Trap planned to commence mid-November 2025

Commenting on the announcement, Rimfire's Managing Director Mr David Hutton said: "The maiden scandium Mineral Resource estimate for Currajong represents the next step in Rimfire achieving its objective of building a globally significant scandium resource inventory at Fifield – Australia's scandium epicentre.

Importantly the Mineral Resource remains open both laterally and vertically with further work recommended. Rimfire now moves on to drilling for more scandium at the Murga Exploration Target and Rimfire's 100%-owned Rabbit Trap Project which if successful, will see further increases to our global scandium resource inventory."

Details of the Melrose and Murga North Mineral Resource estimates which together with Currajong Mineral Resource estimate make up the scandium resource inventory were previously released by Rimfire in an ASX Announcement entitled "Highly Encouraging Maiden Scandium Mineral Resources for Melrose and Murga North" dated 9 September 2024.

Rimfire confirms that it is not aware of any new information or data that materially affects the information included in the 9 September 2024 ASX announcement, and that all material assumptions and technical parameters underpinning the estimates in that ASX announcement continue to apply and have not materially changed.

Cautionary Statement: The potential quantity and grade of the Exploration Target is conceptual in nature and there has been insufficient exploration to estimate a Mineral Resource, and it is uncertain if further exploration will result in the estimation of a Mineral Resource.

MANAGEMENT

DAVID HUTTONManaging Director / CEO

DR PETER CROWHURSTExploration Manager

GREG KEANE
Chief Financial Officer and
Alternative Director for Ian
McCubbing

BOARD

IAN MCCUBBING
Chairman

ANDREW KNOX
Non-Executive Director

STEFAN ROSS
Company Secretary

REGISTERED OFFICE

Suite 2, Level 11 385 Bourke Street MELBOURNE VICTORIA 3000

CONTACT DETAILS

DAVID HUTTON + 61 417 974 843

GREG KEANE + 61 497 805 918

rimfire@rimfire.com.au

www.rimfire.com.au

ABN: 59 006 911 744

ASY- PIN

Rimfire Pacific Mining (RIM:ASX, "Rimfire" or "the Company") is pleased to announce a maiden scandium Mineral Resource estimate for the Currajong prospect which is located within the Fifield District - Australia's scandium epicentre, approximately 70 km NW of Parkes in central NSW (*Figure 1*).

Currajong lies within the Avondale Project which is subject to an Earn-In agreement with Rimfire's exploration partner Golden Plains Resources (GPR). Under the terms of the agreement, GPR can earn up to 75% interest by completing expenditure of \$7.5 million with \$2.275 million spent to date.

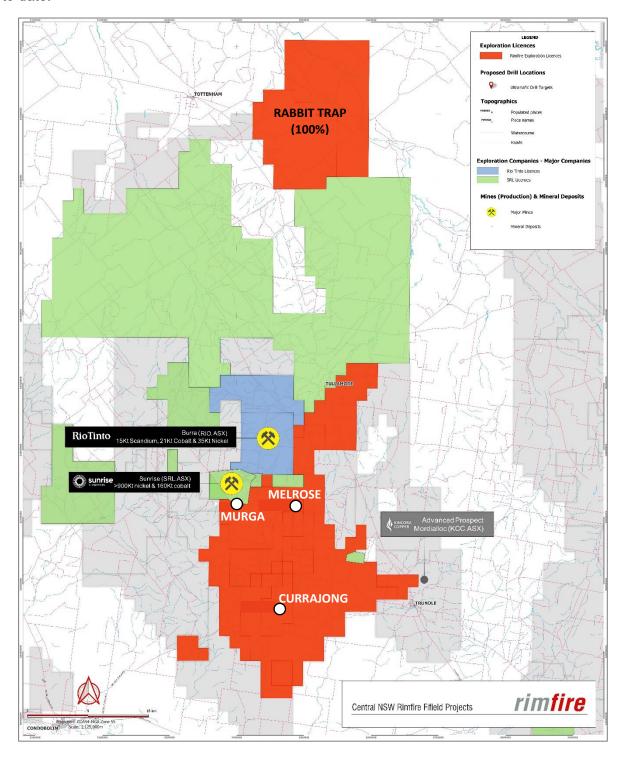


Figure 1: Rimfire Scandium Projects and regional tenement holders.

Resource Estimate Details

H&S Consultants Pty Ltd (HSC) were engaged by Rimfire to undertake a Mineral Resource estimate for the Currajong Scandium Prospect. The Mineral Resource is reported in accordance with the 2012 JORC Code and Guidelines using a 100ppm scandium cut-off grade (see Table 1).

Regionally Currajong is part of a magnetic ultramafic intrusive complex of an Early Silurian-age. Available public information indicates the bedrock geology across the project is dominated by multiple bodies of mafic/ultramafic units (Alaskan-Ural type) that are interpreted to locally intrude the sedimentary and felsic intrusive host rocks.

The Currajong area generally lacks geological exposure. These rocks outcrop but are not readily exposed due to a thin soil and gravel cover, generally 1-5m thick.

Scandium (+/- cobalt and nickel) mineralisation occurs within two geological domains, a flat-lying ferruginous laterite zone with associated metal enrichment ("Laterite type") that has developed on top of a serpentinised ultramafic (dunite and pyroxenite) suite which displays unusual anomalous levels of scandium ("Ultramafic type"). The development of the laterite is due to extensive and prolonged weathering in the area. The Ultramafic type of mineralisation is typically weakly to moderately weathered given most of Rimfire's 2025 air core holes were drilled to blade refusal, which did not penetrate fresh ultramafic basement.

An Inferred Mineral Resource has been estimated for both the Laterite type and Ultramafic type at Currajong (Table 1).

Material Information used to estimate the Mineral Resources is given in Appendix One and JORC Reporting Table 1 (Sections 1 to 3) of this ASX Announcement. A scandium block grade distribution for the Currajong Inferred Mineral Resource is shown in Figure 2 and representative cross sections are included in Appendix One.

Photographs of the Laterite Type and Ultramafic Type zones in air core chip trays are shown in Appendix One.

Table 1: Currajong Scandium Deposit Inferred Mineral Resource Estimate (100ppm Sc cut-off grade).

Category	Mt	Sc ppm	Sc Oxide* ppm	Sc Tonnes	Sc Oxide Tonnes
Laterite Inferred	3.8	170	261	639	979
Ultramafic Inferred	11.3	126	193	1,420	2,183
Total Inferred	15.1	137	210	2,059	3,163

^{*} Sc multiplied by 1.5338 to convert to Sc Oxide (Sc₂O₃). Table includes minor rounding errors.

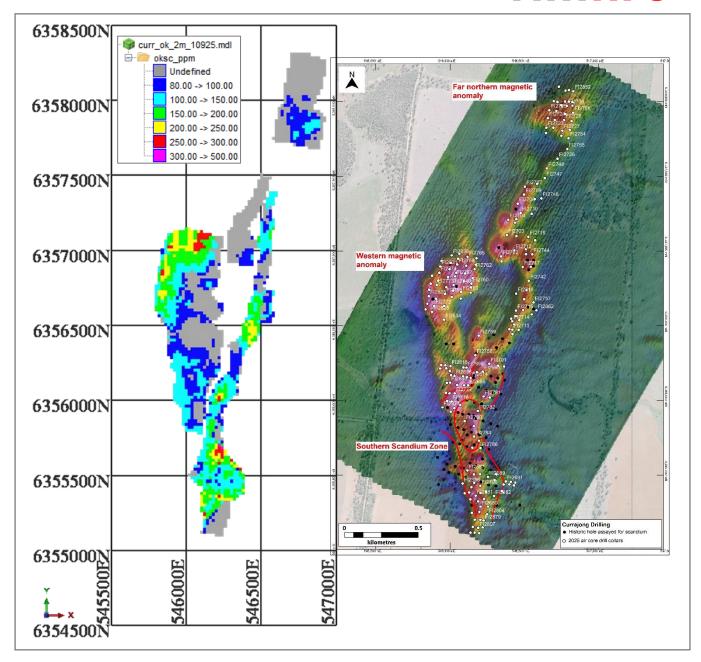


Figure 2: Scandium block grade distribution for the Currajong deposit alongside the Currajong TMI magnetic image at same scale.

Significance of the Currajong Mineral Resource

The maiden scandium Mineral Resource estimate for Currajong represents the next step in Rimfire achieving its objective of building a globally significant scandium resource inventory at Fifield in NSW.

Rimfire has existing mineral resources at Melrose and Murga North, and the addition of the new Currajong Mineral Resource represents a 61% increase on the previous resource inventory total.

Rimfire's scandium resource inventory at Fifield now totals 5,449t Sc (8,333t Sc Oxide) as detailed in Table 2.

Significantly Currajong remains open both laterally and vertically with further drilling recommended to both better define and expand the Mineral Resources (see Appendix One).

Metallurgical test work is recommended to confirm metal recoveries for both mineral types at Currajong. It is also recommended that an evaluation of other elements, both as possible byproducts and penalty elements is undertaken.

Regionally significant upside remains to increase the resource inventory further as demonstrated by an Exploration Target for the broader Murga area and the 100% - owned Rabbit Trap Scandium Project.

	Table 2 - Rimfire Scandium Resource Inventory (Refer to RIM ASX Release 5/09/2024)									
Cut off	Deposit	Category	Mt	Sc ppm	Sc Oxide* ppm	Sc tonnes	Sc Oxide tonnes			
	Melrose	Indicated	2.9	250	380	730	1,100			
	Melrose	Inferred	0.1	200	310	16	20			
100ppm	Melro	se Total ¹	3.0	240	380	740	1,120			
Sc	Murga North ¹	Inferred	21.0	125	190	2,650	4,050			
	Currajong	Inferred	15.1	137	210	2,059	3,163			
		5,449	8,333							

^{*} Sc multiplied by 1.5338 to convert to Sc Oxide (Sc₂O₃). Table includes minor rounding errors.

Rimfire confirms that it is not aware of any new information or data that materially affects the information included in the 9 September 2024 ASX announcement, and that all material assumptions and technical parameters underpinning the estimates in that ASX announcement continue to apply and have not materially changed.

Murga Exploration Target

HSC defined an Exploration Target for the broader Murga area (excluding the Murga North Mineral Resource) in 2024 (See RIM's ASX Announcement dated 9 September 2024).

It is based on an outline of the scandium-bearing pyroxenite interpreted from aeromagnetic data and results of Rimfire's 2024 reconnaissance air core drilling (on nominal 400m x 400m centres) throughout the Murga area.

The boundaries of the Exploration Target are shown in Figure 3, and an average thickness of 15 metres has been assumed along with a default density of 2.15t/m³. However, it is unknown at this stage if the whole outlined area will have reasonable prospects for eventual extraction so it has been assumed that only 50% of the area within the pyroxenite outline will be classified as the **Exploration Target.**

The Exploration Target for the broader Murga area (excluding the Murga North Mineral Resource) is: 100 to 200Mt at 100 to 200ppm Sc ²

Since the Exploration Target was defined in September 2024, Rimfire has conducted air core and diamond drilling within the southern half of the exploration target which has successfully identified strongly anomalous scandium both within the near surface laterite and underlying fresh

¹ Details of the Melrose and Murga North Mineral Resource Estimates were previously released by Rimfire in an ASX Announcement entitled "Highly Encouraging Maiden Scandium Mineral Resources for Melrose and Murga North" dated 9 September 2024.

² Cautionary Statement: The potential quantity and grade of the Exploration Target is conceptual in nature and there has been insufficient exploration to estimate a Mineral Resource, and it is uncertain if further exploration will result in the estimation of a Mineral Resource.

pyroxenite rocks (see Rimfire ASX Announcements dated 16 December 2024 and 28 March 2025).

Rabbit Trap Scandium Project (100% RIM)

Lying north along strike from the company's Fifield and Avondale projects, previous drilling on the 100% - owned project has identified strongly anomalous scandium within a flat - lying weathered and lateritised pyroxenite at the Malamute Prospect (See Rimfire's ASX Announcement dated 27 November 2024), i.e.

- o 18m @ 217ppm Sc (332ppm Sc Oxide) from 30m in MA07 including 6m @ 331ppm Sc (508ppm Sc Oxide),
- o 9m @ 197ppm Sc (302 ppm Sc Oxide) from 8m in MA08 including 3m @ 272ppm Sc (417ppm Sc Oxide),
- 9m @ 242ppm Sc (371ppm Sc Oxide) from 34m in MA44 including 3m @ 373ppm Sc (572ppm Sc Oxide), and
- o 10m @ 270ppm Sc (414ppm Sc Oxide) from 25m in MA48 including 4m @ 295ppm Sc (452ppm Sc Oxid).

Scandium at Malamute is present over a 400m x 500m area and remains open to the west.

Consistent with other scandium occurrences in the district, Malamute is characterised by a discrete magnetic anomaly which is "mapping" the underlying pyroxenite unit.

A review of publicly available magnetic imagery for the broader project area has identified three additional undrilled magnetic anomalies (each with approximate 1.5 km strike lengths) that display similarities to the Malamute magnetic anomaly (Figure 4).

Given the similarities with Malamute, Rimfire believes that the untested magnetic anomalies represent a significant opportunity for the discovery of new occurrences of laterite - hosted scandium mineralisation.

Next Steps

Air core drilling is planned to commence within the northern half of the Murga Exploration Target by mid November 2025 followed by air core drilling at Rabbit Trap.

Rimfire looks forward to providing further updates as new information comes to hand.

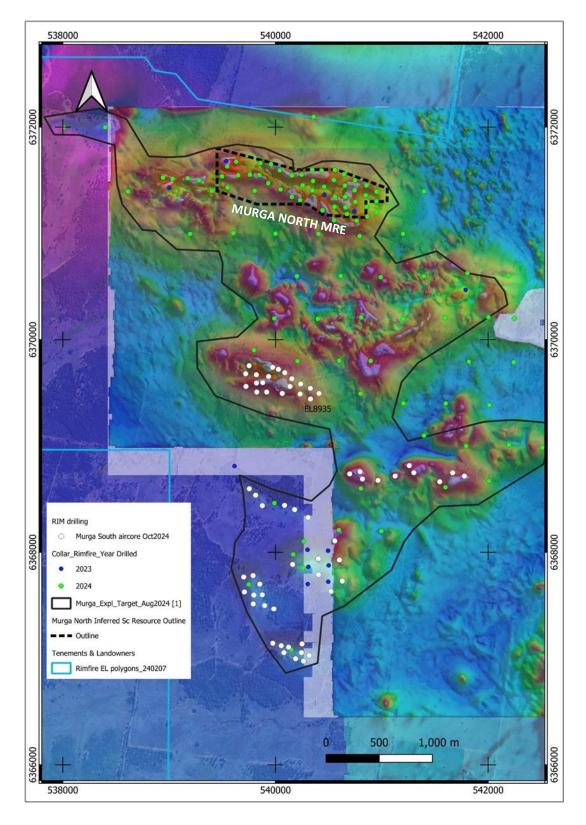


Figure 3: Murga Exploration Target showing the Murga North MRE outline and existing drill hole locations.

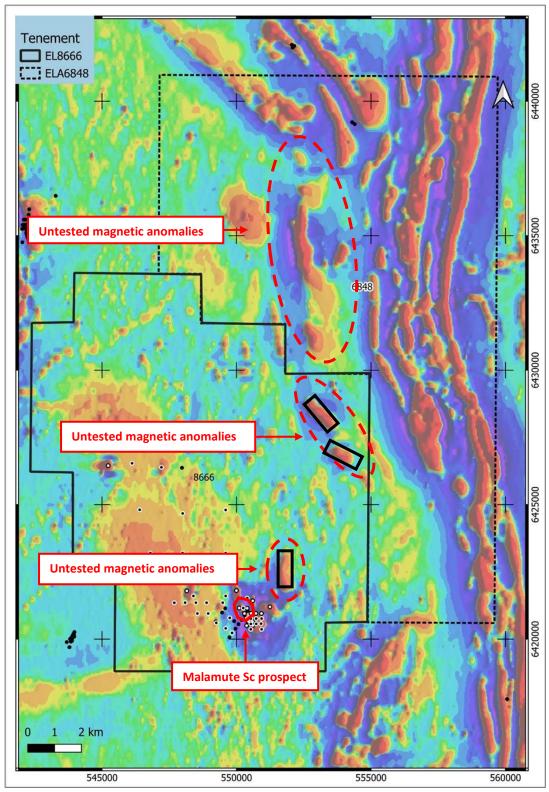


Figure 4: Rabbit Trap Scandium Project showing location of Malamute prospect and untested magnetic anomalies. Areas of planned initial air core drilling shown as black rectangles. Historic drill holes shown as black dots.

ENDS

This announcement is authorised for release to the market by the Board of Directors of Rimfire Pacific Mining Limited.

For further information please contact:

David Hutton Managing Director / CEO Ph: +61 417 974 843

Competent Person Statements

The information in this report that relates to Exploration Results is based on, and fairly represents, information and supporting documentation prepared by David Hutton, Managing Director for Rimfire Pacific Mining Limited. Mr Hutton is a Fellow of the Australasian Institute of Mining and Metallurgy (FAusIMM) and he has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which has been undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Hutton consents to the inclusion in this release of the matters based on the information in the form and context in which they appear.

The data in this report that relates to Mineral Resource estimates is based on information compiled and evaluated by Mr Simon Tear who is a Member of The Australasian Institute of Mining and Metallurgy (MAusIMM) and who has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the "JORC Code"). Mr Tear is a Director of H&S Consultants Pty Ltd and he consents to the inclusion in the report of the Mineral Resource in the form and context in which they appear.

Forward looking statements Disclaimer

This document contains "forward looking statements" as defined or implied in common law and within the meaning of the Corporations Law. Such forward looking statements may include, without limitation, (1) estimates of future capital expenditure; (2) estimates of future cash costs; (3) statements regarding future exploration results and goals.

Where the Company or any of its officers or Directors or representatives expresses an expectation or belief as to future events or results, such expectation or belief is expressed in good faith and the Company or its officers or Directors or representatives, believe to have a reasonable basis for implying such an expectation or belief.

However, forward looking statements are subject to risks, uncertainties, and other factors, which could cause actual results to differ materially from future results expressed, projected, or implied by such forward looking statements. Such risks include, but are not limited to, commodity price fluctuation, currency fluctuation, political and operational risks, governmental regulations and judicial outcomes, financial markets, and availability of key personnel. The Company does not undertake any obligation to publicly release revisions to any "forward looking statement".

RESOURCE ESTIMATION | FEASIBILITY STUDIES | DUE DILIGENCE

RESOURCE SPECIALISTS TO THE MINERALS INDUSTRY

16th October 2025

Peter Crowhurst Exploration Manager Rimfire Pacific Limited (by email)

Resource Estimates for the Currajong Scandium Prospect, New South Wales

H&S Consultants Pty Ltd ("HSC") was requested by Rimfire Pacific Mining Ltd ("RIM") to complete maiden resource estimates for the Currajong Scandium Prospect. The project is located 30km NW of the small rural town of Trundle in Central NSW, approximately 80km NW of the regional town of Parkes (Figure 1). The prospect is part of RIM's multiple prospects Fifield Project which includes two other advanced deposits that have scandium Mineral Resources delineated, namely Melrose and Murga. The mineralisation is a residual deposit consisting of two types, a laterite-hosted higher grade zone, the 'Laterite Type', and a partially oxidised serpentinised ultramafic, the 'Ultramafic Type' that is also host to possible primary mineralisation with elevated scandium grades. The deposit is in a similar setting to the nearby Burra deposit currently owned by Rio Tinto. The maiden resource estimates are reported as Mineral Resources in accordance with the 2012 JORC Code & Guidelines.

The Currajong prospect lies on Exploration Licence EL8935 at Fifield, NSW, which is wholly - owned by Rimfire Pacific Mining Limited. The tenement forms part of the Company's Avondale Project which is subject to an Earn-In and Joint Venture Agreement with Golden Plains Resources Pty Ltd ("GPR") whereby GPR can earn up to a 75% interest by completing expenditure of \$7.5M over 4 years.

Currajong lies on Private Freehold Land, no Native Title exists and the land is used primarily for grazing and cropping.

Regional & Local Geology

The Currajong prospect is part of the predominantly north-south trending Macquarie Arc and lies on the western margin of the Lachlan Orogen which hosts world class Au-Cu deposits such as Northparkes, Cadia and Cowal. The 'Alaskan-Ural' type ultramafic-mafic intrusive complex is a large zone that is exposed intermittently along the western margin of the arc for approximately 350km from Young to Nyngan and hosts several Sc-Co-Ni deposits. The intrusive complex is interpreted to have been derived from subduction zone shoshonitic magmas and emplaced during the final (relaxation) phase of the Macquarie Arc accreting to the Australian margin during the Late Ordovician-Early Silurian period.

E | info@hsconsultants.net.au

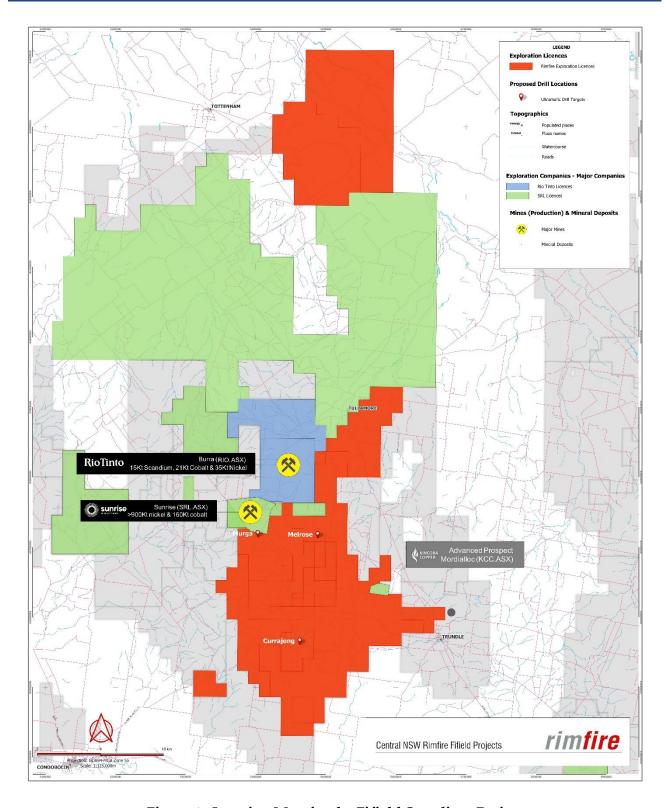


Figure 1 Location Map for the Fifield Scandium Project

In a regional context, Currajong is part of a magnetic ultramafic intrusive complex of an Early Silurian-age. Available public information indicates the bedrock geology across the project is dominated by multiple bodies of mafic/ultramafic units (Alaskan-Ural type) that are interpreted to locally intrude the sedimentary and felsic intrusive host rocks (Figure 2).

The Currajong area generally lacks geological exposure. These rocks outcrop but are not readily exposed due to a thin soil and gravel cover, generally 1-5m thick.

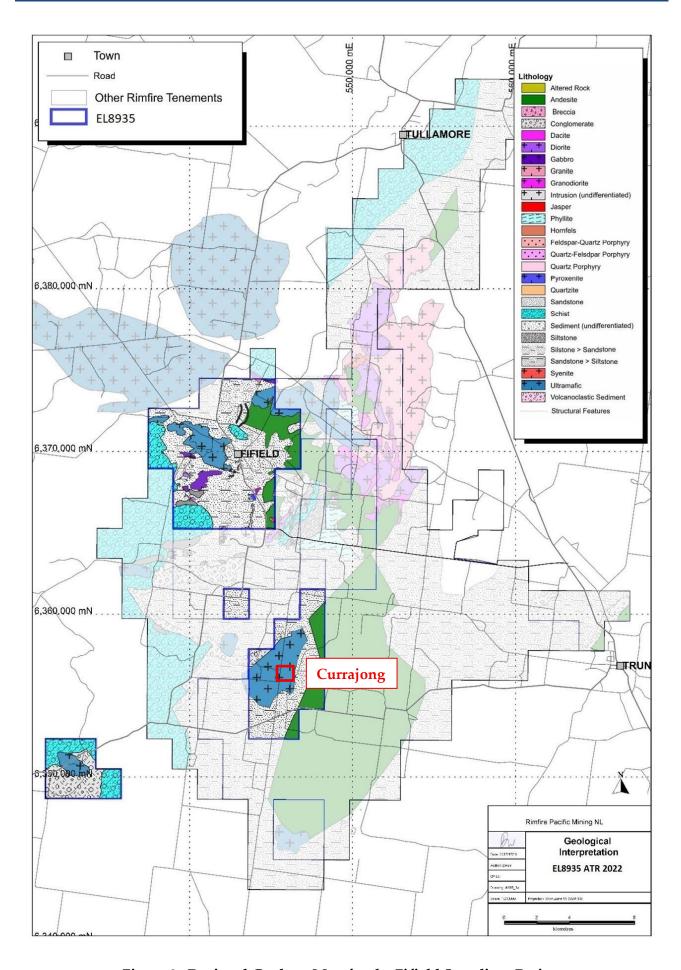


Figure 2 Regional Geology Map for the Fifield Scandium Project

Interpretation of the sub-surface geology from the drilling has suggested that the bounding units may be in faulted contact with the ultramafic suite, eg clay zones at the contacts of the units coinciding with abrupt termination of the laterite.

Figure 3 comprises logged geology from bottom of hole samples (2025 drilling) for the Currajong deposit and demonstrates the distribution of the lateritic-related lithologies (LATR, SAPL, SAPR) and the ultramafic lithologies (Bserp, GABR, MAFC, PYR & ULMF).

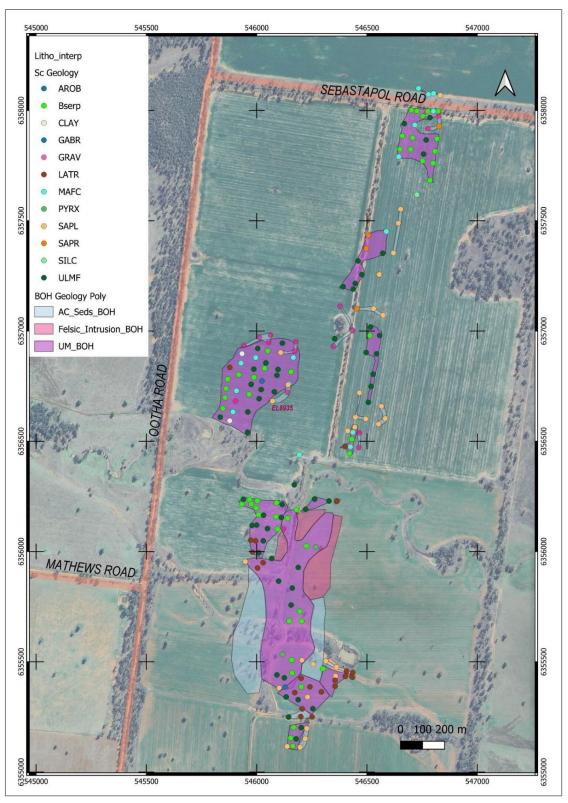


Figure 3 Subsurface Geology Map for Currajong from Aircore Drilling

The Sc-(Co-Ni) style of mineralisation associated with the prospect is a residual (secondary) deposit type. This comprises two deposit types, a flat-lying ferruginous laterite zone with associated metal enrichment ("Laterite type") that has developed on top of a serpentinised ultramafic (dunite and pyroxenite) suite which displays unusual anomalous levels of scandium ("Ultramafic type"). The development of the laterite is due to extensive and prolonged weathering in the area. The Ultramafic type mineralisation is typically weakly to moderately weathered given most of Rimfire's 2025 air core holes were drilled to blade refusal, which did not penetrate into fresh ultramafic basement.

An example of XRD (X-ray diffraction) analysis of the mineralised laterite profile and the ultramafic type for Currajong is included as Figure 4. The main mineralised laterite zone (in hole FI2797) can be seen to exist between 20m and 26m and comprises goethite and hematite beneath a soil cover (high kaolinite). The ultramafic profile from hole FI2827 is more complex with a non-ferrous clay (not always present) overlying lower grade weathered pyroxenite material with potentially the primary scandium mineralisation occurring from 27m onwards.

Laterite Type FTIR-MIN FTIR-MIN FTIR-MIN FTIR-MIN FTIR-MIN FTIR-MIN FTIR-MIN FTIR-MIN Rocktype Sc Plagioclase K Feldspar Magnetite Pyroxene Goethite Hematite Kaolinite FTIR Interp Quartz FeOx From (m) To (m) % % % Ppm % 6 24 15 16 70 16 <1 1 <1 <1 <1 53 16 17 100 11 <1 1 1 <1 11 1 26 44 17 18 200 6 <1 <1 4 <1 28 37 74 35 Fe-rich laterite <1 19 180 3 <1 6 20 35 78 31 18 <1 Fe-rich laterite 19 20 200 3 <1 <1 2 <1 11 16 66 45 Fe-rich laterite 20 21 510 1 <1 <1 1 <1 24 31 87 33 Fe-rich laterite 2 22 <1 44 34 21 600 1 <1 <1 93 22 Fe-rich laterite 22 23 470 1 <1 <1 <1 32 44 5 Fe-rich laterite 23 24 490 1 <1 <1 2 <1 48 39 10 Fe-rich laterite 91 24 25 490 <1 <1 2 26 55 Fe-rich laterite 1 <1 10 25 500 <1 <1 <1 86 24 Fe-rich laterite

<1

Hole FI2797

Hole FI2827

190

<1

<1

26

Ultramafi	с Туре		FTIR-MIN	FTIR-MIN	FTIR-MIN	FTIR-MIN	FTIR-MIN	FTIR-MIN	FTIR-MIN	FTIR-MIN	FTIR-MIN	Rocktype
		Sc	Quartz	Plagioclase	K Feldspa	Magnetite	Pyroxene	Goethite	Hematite	FeOx	dite-Kaolir	nite FTIR Interp
From	To	ppm	%	%	%	%	%	%	%	%	%	
16	17	400	6	<1	<1	1	<1	1	1	14	43	clay-saprolite
17	18	390	4	1	<1	<1	5	<1	<1	5	34	clay-saprolite
18	19	290	20	5	1	<1	<1	<1	<1	5	20	clay-saprolite
19	20	310	1	2	<1	<1	8	<1	<1	2	14	clay-saprolite
20	21	300	1	2	<1	<1	11	<1	<1	2	10	weathered pyroxenite
21	22	300	3	4	<1	<1	10	<1	<1	3	4	weathered pyroxenite
22	23	310	2	3	<1	<1	15	<1	<1	3	6	weathered pyroxenite
23	24	300	5	3	<1	<1	12	<1	<1	3	10	weathered pyroxenite
24	25	270	2	6	<1	<1	12	<1	<1	5	3	weathered pyroxenite
25	26	340	2	5	<1	<1	16	<1	<1	3	5	weathered pyroxenite
26	27	260	4	4	<1	<1	11	<1	<1	5	5	weathered pyroxenite
27	28	180	3	2	<1	2	1	<1	7	11	3	weathered pyroxenite
28	29	250	2	6	<1	1	20	<1	<1	3	3	weathered pyroxenite
29	30	160	1	1	<1	2	8	<1	3	6	4	weathered pyroxenite

Figure 4 Currajong Mineralised Laterite & Ultramafic Types XRD Analysis

Figure 5 comprises a chip tray photograph of the whole weathered sequence from the southern area with scandium ppm assays in blue (drillhole FI2797). The hole has surficial gravels (2 to 9m), depleted laterite (9 to 17m), Laterite type mineralisation shown as a red line (17 to 26m), lower saprolite (26 to 37m) and weathered serpentinised ultramafic (from 37m) potentially hosting primary scandium mineralisation (purple line).

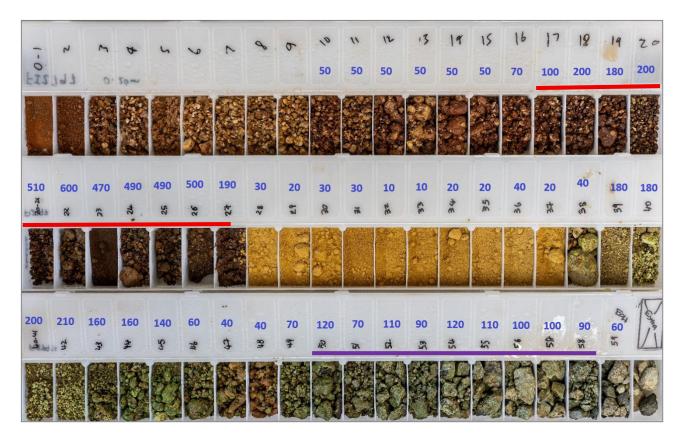


Figure 5 Currajong Mineralised Laterite Type - Drillhole FI2797 (16-26m)

Figure 6 shows a chip tray photograph of the weathered profile from the central west area of the deposit with scandium ppm assays in blue (drillhole FI2827). The hole comprises a gravel sequence (2 to 15m) followed by a scandium enriched non-ferrous clay (not always present) from 15 to 20m (the cyan line) overlying lower grade weathered slightly enriched mineralised pyroxenite material (20 to 26m; the green line) with potentially primary scandium mineralisation preserved from 26m onwards.

Figure 6 Currajong Mineralised Ultramafic Type Drillhole FI2827 (0-30m)

Drilling Information

Aircore (AC) drilling and a minor amount of reverse circulation (RC) drilling was used to carry out sampling at the Currajong Prospect. A total of 316 holes were completed by RIM for a total meterage of 10,410m. Drilling details are summarised in Table 1.

Historic RC drilling was completed in 2000 and 2002 but was not assayed for scandium.

Location Company Year No of holes Metres Sc Assays Type 2003 1,741 Currajong Rimfire AC43 Yes Currajong Rimfire 2018 AC11 522 Yes 2022 AC 62 Currajong Rimfire 1,689 Yes ACCurrajong Rimfire 2025 200 6,458 Yes 1988 RC Currajong Helix 80 2,832 No No Black Range Currajong Minerals 2000 **RC** 8 232 425 Currajong Rimfire 2002 RC No

Table 1: Drilling Details

Drilling was completed using suitably qualified industry contractors with standard rigs and practices relevant to the type of drilling. All holes were drilled vertically except for the AC and RC holes between 2000-2018 which were angled holes, predominantly dipping -60 $^{\circ}$ to the west (270 $^{\circ}$). AC drilling was carried out using a $3\frac{1}{2}$ inch diameter blade bit but there is no hole size information for the RC drilling.

Sample recovery for the RC and AC drilling was based on approximate estimates of total sample quantity for each 1m interval yielding visual estimates of 0, 25, 50, 75, 100, 125% for each metre. Sample weights for the AC split were recorded by the laboratory. As a proxy for sample recovery plotting of the AC weights indicated a broad range of sample weights but no obvious relationship between scandium grade and sample weight.

All RC and AC samples were logged as being dry.

No downhole surveys were taken for any of the holes as the majority of holes are relatively short and vertical. There are a small number of angled AC and RC holes but no downhole survey data is available, although it should be noted that these holes were relatively short i.e. <50m.

Sampling & Sub-sampling Techniques

The 2025 AC samples were collected on a 1m basis into individual buckets directly beneath the rig cyclone for logging. A sub-sample was produced in a calico bag from a cone splitter mounted on the rig cyclone.

For the 2018-2023 AC drilling samples were collected on a 1m basis into individual buckets directly beneath the rig cyclone for logging and spear sampling. A PVC spear was used to obtain a sample of every drilled metre with care to ensure the sample was as representative as possible.

All samples were placed in calico bags, packaged up and sent for analysis at a commercial laboratory for sample preparation and analysis. A small number of samples (<10%) from peripheral mineral zones in the earlier drilling were composited to 2m, 3m and 4m.

All samples, generally between 1 and 3kg, were submitted to ALS Pty Ltd (Orange) or SGS Pty Ltd (Orange) for sample preparation and analysis using industry standard and appropriate techniques, detailed below.

- AC samples (for 2025 holes FI2691 FI2879) were submitted to ALS Pty Ltd for sample preparation and analysis as follows:
 - o ALS Method WEI-21 Received weight
 - o ALS Method DRY21 − Oven drying of samples at 105°C.
 - o ALS Method SPL21 Split sample using a riffle splitter
 - ALS Method PUL23 Pulverise up to 3kg to 85% passing 75 microns 0.7g samples split for digestion and analysis
- AC samples (for 2025 holes FI2680 FI2690) were submitted to SGS Pty Ltd for sample preparation as follows:
 - o SGS Method G_WGH_KG Sample weight
 - o SGS Method G_DRY_KG Sample drying at 105°C per kg.
 - o SGS Method G_SPL27 Split sample if over 3kg
 - SGS Method G_PUL Pulverise, nominal 85% passing 75um, Cr Steel, 1.5-3.0kg 1g subsample split for digestion and analysis
 - o SGS Method G_PHY02V Loss on Ignition (LOI), TGA, variable wt, various temp

All sampling equipment was cleaned between samples.

64 blanks (brick sand purchased from a local hardware store) were submitted for analysis in 2025 and 19 blanks in 2023. No contamination issues have been identified. No data is available for blanks prior to 2023. A total of 24 field duplicates were collected and analysed for the AC drilling in 2025. The results showed no bias with the sampling and thus indicate no issues with the sampling. No duplicates were analysed for the 2023 drilling. No data for duplicates prior to 2023 are available. Results. No independently selected laboratory duplicates were taken.

All sample and sub-sample sizes for the drilling are considered appropriate to the grain size of material being sampled.

For sample security the 2023 and 2025 drill samples were collected in calico bags at the drill site by RIM personnel and brought to RIM's Fifield field base for storage and preparation of sample submission paperwork. The Fifield premises were locked after hours and monitored with security cameras. The calico bags were placed inside zip-tied double large green plastic bags and delivered directly to the laboratory in Orange, NSW by company personnel. At ALS and SGS Orange, the samples were handed over to ALS and SGS personnel who acknowledge receipt of the samples with the creation of a work order. No third-party transporters are used to deliver samples to the laboratory.

Sample Analysis Method

The methods used by ALS and SGS to analyse the drill samples for precious and base metals are industry standard. The ME-ICP61 method (ALS) is a 4-acid digestion technique and is considered to be a 'near-total' digest while the ME-XRF12n and SGS GO_XRF72C13 methods are considered to be a 'total' digestion technique.

The following are details of the analytical methods used for the different phases of drilling:

- All aircore samples from 2003-2018-2022 were analysed using a 4 acid digest and ICP analysis (ME-ICP61) for a suite of 33 elements; Ag, Al, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Th, Ti, Tl, U, V, W, Zn with select samples later reanalysed using ME-XRF12n.
- For 2025 all AC samples were analysed using ME-XRF12n (ALS) for a suite of 17 elements and oxides; Al₂O₃, CaO, Co, Cr₂O₃, Cu, Fe₂O₃, K₂O, MgO, MnO, Na₂O, Ni, P₂O₅, Pb, SiO₂, TiO₂, Zn, Sc (and LOI)
- SGS GO_XRF72C13 for a suite of 21 oxides and elements; Al₂O₃, BaO, CaO, Co₃O₄, Cr₂O₃, CuO, Fe₂O₃, K₂O, MgO, MnO, Mn₃O₄, Na₂O, NiO, P₂O₅, PbO, SiO₂, SO₃, SrO TiO₂, ZrO₂, Sc₂O₃ (and LOI)

Assay results for the coarse blanks (brick sand purchased form the local hardware store) indicated no contamination issues.

A total of 82 samples from 3 Certified Reference Materials ("CRMs") were used to measure the ALS's accuracy for the 2025 drilling. CRM's OREAS 197 and OREAS 198 have certified values for Sc by fusion XRF but OREAS 198 is not certified for the aqua regia digest. OREAS 181 has an indicative expected value Sc by fusion XRF but is not certified for the aqua regia digest and does not have control limits. CRM's OREAS 181 and OREAS 198 are therefore of limited use in determining accuracy of the analysis. However the vast majority of results for the Sc certified CRM reported within +/-10% of the certified value.

The Sc₂O₃ results from the SGS laboratory for 2 CRMs (OREAS 197 and OREAS 198 i.e. 3 samples) were reported as being within 3 certified standard deviations of the certified expected values.

No QAQC data is available for assays prior to 2022.

Database

All significant drill intersections have been verified by both RIM's Exploration Manager, Peter Crowhurst and Managing Director, David Hutton. Responsibility for the exploration data resides with RIM.

Sampling data was recorded on field sheets at the sample site. This field data was entered into a series of Excel spreadsheets and saved on the Company's OneDrive (Cloud server). Geological logging was recorded directly into the LogChief program during drilling and backed up on the Company's OneDrive (cloud server). In addition, the Company utilises third party data management company, Rock Solid Data Pty Ltd., to conduct quality control checks on all of RIM's exploration data before being stored on their secure offsite data servers (remote back up). Assay results are reported by the lab in a digital format suitable for direct loading into a Datashed database run by Rock Solid Data.

The XRF assays for scandium were consistently reported higher than the ICP results. As a result a simple correction factor of a 10% increase was applied to the ICP scandium assays for subsequent use in the geological interpretation and the grade interpolation. An additional adjustment to the assay data was the replacement of below detection assays with half the lower detection limit.

Drill hole locations at Currajong were all initially recorded using a handheld Garmin GPS with a nominal accuracy +/- 3m. The collar location of 126 AC holes drilled by Rimfire in 2025 were recorded by specialist surveying company, Arndell Surveying Pty Ltd (Parkes NSW based), using a Differential GPS with nominal accuracies of +/- 1mm in X, Y and Z. This work confirmed the general accuracy of the collar positions. All coordinate data is in the national grid format, MGA94 Zone 55.

A 3D topographic surface was generated from 5m spaced LiDAR and the drillhole collars were draped over the surface to enable collar elevation to match topography. In an area of flat relief this is adequate for the MRE. The quality of topographic control at Currajong is considered to be reasonably accurate.

Drilling was conducted on nominal 50 metre centres extending to 100m in more peripheral areas. Down hole sampling has predominantly been on 1m intervals (>92%) with the remainder being composited samples at 2m, 3m and 4m intervals from peripheral areas. The data spacing and distribution is sufficient to establish a reasonable level of confidence in the geological and grade continuity and is appropriate for the Mineral Resource procedures and classification.

Data was collated by RIM from hardcopy geology logging was transcribed into LogChief software which has set of drop down codes to provide consistency and to prevent keying errors.

Data was supplied to HSC as a series of CSV files for collars, surveys, geology and assays (XRF & ICP). HSC compiled an MSAccess databases (details of collars in Table 2) for the deposit that was then linked to the Surpac mining software for further work. A limited series of database checks were completed by HSC using indexed fields and the Surpac database audit option. Any database errors were referred back to RIM for correction.

Table 2: Drillhole Collar Statistics

	1
Number of holes	408
Total drill metres (m)	13773.70
Average hole length (m)	33.76
Northing Minimum (m)	6355112.00
Northing Maximum (m)	6358743.26
Northing Range (m)	3631.26
Easting Minimum (m)	545806.94
Easting Maximum (m)	547122.15
Easting Range (m)	1315.21
Elevation Minimum (m)	251.54
Elevation Maximum (m)	276.08
Elevation Range (m)	24.51

A database summary is included as Table 3.

Item **Holes** Records Survey 408 816 Geology 371 1756 Co ppm 267 4083 Fe % 259 3968 Mn ppm 257 3901 Ni ppm 267 4083 Sc ppm 237 3715

Table 3: Currajong Drillhole Sub-table Record Statistics

HSC's assessment of the data confirms that it is suitable for resource estimation.

Geological Interpretation

The basic geological model of a flat-lying residual deposit, albeit of two different mineral types (Laterite and Ultramafic types), appears to be reasonable and appropriate for resource estimation. The style of mineralisation and the orebody type mean that there is a strong horizontal control to the metal grades and geological continuity. The principal factors influencing continuity of grade and geology are the degree of weathering and the lateral extent and chemical nature of the underlying ultramafic units.

Interpretation of the drillhole database allowed for the generation of 3D mineral constraining solids for the deposit on 50m spaced sections with an approximate E-W orientation. The section lines were rotated 10° clockwise to line up with the drill spacing. Definition of the mineral wireframes was relatively straightforward with snapping of strings to drillholes at the appropriate downhole position allowing for a reasonable level of confidence. A total of 5 mineral wireframes were interpreted comprising the two mineral types (**Figure 7**). The first is a laterite/saprolite hosted oxide body of elevated scandium with a basal limit related to oxidation level (referred to as the 'Laterite Type'). The other mineral type was weakly weathered serpentinite—altered ultramafic/pyroxenite with elevated scandium mineralisation (referred to as the 'Ultramafic Type'). In both instances a nominal scandium cut-off grade of 50-60ppm was used to assist in the definition of the mineral zones in conjunction with the lithological logging, Co, Ni, Fe & Mn assays and geological sense. Two mineral domains represent the Laterite Type and 3 mineral domains were created for the Ultramafic Type.

A 2D geology map and an airborne TMI magnetic image were draped over 3D topography to assist with constraining the lateral limits of the mineral wireframes. The drilling has generally reached the base of mineralisation particularly for the laterite type. Some of the earlier holes stopped short of the base of mineralisation and an occasional drillhole has penetrated into the underlying fresh rock ultramafic units. Some of the drill intercepts in the Ultramafic Type mineralisation appear to suggest a primary level of enrichment that may or may not have been modified by subsequent oxidation/weathering. Where the base of mineralisation was not necessarily intersected in the drilling the interpreted basal surface was horizontally extrapolated from nearby holes which had passed through the mineralisation.

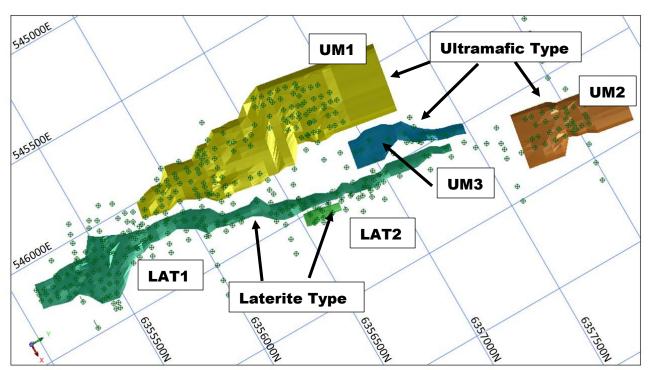


Figure 7 Currajong Geological Interpretation (green circles = drill collars)

Alternative interpretations are possible for the mineral zone definition but are unlikely to significantly affect the estimates.

The Mineral Resource has a strike length (N-S) of 2,750m, an across strike length (E-W) of 800m, and a thickness range of 1 to 42m with an average thickness of 13m. Mineralisation outcrops but is not exposed at surface, occurring at a minimum of 3m below surface and reaching a maximum depth below surface of 60m.

Estimation Methodology

The estimation technique employed by HSC for the deposit was Ordinary Kriging of the drillhole composites. The interpolated block grades were then loaded into a 3D block model for subsequent resource reporting. The mineral wireframes were treated as a hard boundaries during the estimation process i.e. for composite generation and block grade interpolation. Composites at 1m were generated using the 'fixed length' option in the Surpac mining software, with values <0.5m in length being discarded. A total of 2,365 composites, 943 for the laterite domains and 1,422 for the ultramafic domains, were used to estimate scandium only (Figure 8).

No top cuts were applied to the data due to an absence of extreme values and low coefficients of variation (CV = standard deviation/mean) for scandium (CV<0.75). Domaining was limited to the 3D outlines of the mineral zones.

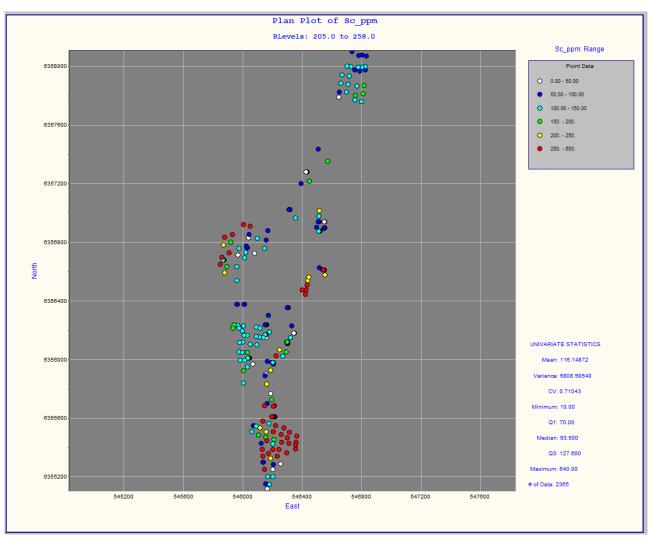


Figure 8 Scandium Composites for Currajong (Plan View)

Figure 9 is a cumulative frequency plot for the 1m composites for the five mineral domains. The segregation between the laterite and ultramafic types is quite apparent.



Figure 9 Cumulative Frequency Plots of 1m Composites for Different Mineral Zones

HSC considers Ordinary Kriging to be an appropriate estimation technique for this type of mineralisation based on observations made on the drilling data and the outcomes from the summary statistical analysis for the composite data (Table 4), eg the relatively low CV.

Zone	LAT1	LAT2	UM1	UM2	UM3
No. Data:	892	28	802	592	51
mean:	153.4	132.9	108.1	75.6	53.3
variance:	12150.1	7087.8	2787.3	598.9	631.2
SD:	110.2	84.2	52.8	24.5	25.1
CV:	0.72	0.63	0.49	0.32	0.47
Minimum:	10	30	10	20	15.4
Median:	112.2	102.85	110	70	53.9
Maximum	640	279.4	430	180	150

Table 4: Summary Statistics for Scandium 1m Composites

(CV = Coefficient of Variation; SD = Standard Deviation)

3D variography with orthogonal directions was performed on the composite data and a moderately distinct grade continuity was definable for scandium. 3D variogram models for scandium in both deposit types in the XY plane are included in Figure 10. There is good downhole continuity in the scandium grade but only moderate grade continuity for the along strike and across strike continuity.

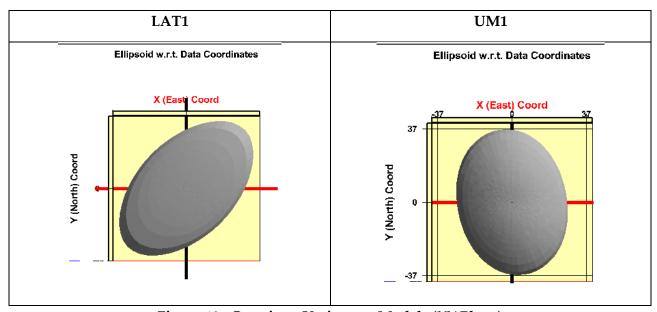


Figure 10 Currajong Variogram Models (XY Plane)

Drill holes are spaced on a relatively regular grid with a nominal spacing of 50m by 50m with downhole sample intervals ranging from a dominant 1m to minor amounts of 2, 3 and 4m samples. Table 5 provides block model details for Currajong, with no sub-blocking. The X and Y dimensions were based on the drill spacing, the Z dimension was a function of potential mining scenarios.

Table 5: Currajong Block Model Parameters

Block Model Summary curr_ok_2m_10925.mdl						
Type	X	Y	Z			
Minimum Coordinates	545730	6354770	181			
Maximum Coordinates	547290	6358410	281			
Min. Block Size	20	20	2			

Grade interpolation was completed using the GS3M software. A 3D expanding search pass strategy was used with the search parameters based on the horizontal geometry of the mineralisation, the drill spacing and the variography. Modelling consisted of 4 search passes for each deposit type. Details of the search parameters are included in Table 6, with horizontal orientations for the search ellipse in keeping with the geometry of the mineralisation.

Table 6: Search Parameters

Laterite	Pass 1	Pass 2	Pass 3	Pass 4
X	50	100	100	150
Y	100	200	200	300
Z	2	4	4	10
Min Data	12	12	6	6
Max Data	32	32	32	32
Min Octants	4	4	2	2

Ultramafic	Pass 1	Pass 2	Pass 3	Pass 4
X	70	140	140	200
Y	70	140	140	200
Z	4	8	8	40
Min Data	12	12	6	6
Max Data	32	32	32	32
Min Octants	4	4	2	2

The maximum extrapolation of the estimates is 300m for the Laterite Type and 200m for the Ultramafic Type.

Metal grades were estimated in 3D using Ordinary Kriging with the grades loaded into a Surpac mining software 3D block model for validation and resource reporting. The final block model was reviewed visually by HSC, and it was concluded that the block model fairly represents the scandium grades observed in the drill holes. HSC also validated the block model statistically using a variety of histograms and summary statistics. Validation confirmed the modelling strategy as acceptable with no significant issues.

No production has taken place, so no reconciliation data is available. The Mineral Resources are considered Maiden Mineral Resources.

Density

Density data collected for the Melrose Scandium Deposit (see RIM's ASX Announcement dated 5 September 2024), which lies 16 kilometres north of Currajong, was supplied to HSC. This dataset consisted of 105 selected samples of drill core (Table 7) that were measured for density using the weight in air/weight in water method (Archimedes Principle) on air-dried core samples sealed in clingfilm. Density was measured for 26 laterite samples with an average density 2.15t/m³. A total of 17 samples were for ultramafic/serpentinite samples with an average density of 2.15t/m³. The Melrose data was used for assigning density at Currajong, given the geological similarities between Melrose and Currajong. No specific measurements have been made on the Currajong material at this stage.

Rock Type No of Samples Min Max Ave Density t/m³ 2.22 2.09 Clay 3 1.66 Laterite 26 1.86 2.47 2.15 Pyroxenite 45 1.58 2.79 2.43 Oxidised <30m 23 1.58 2.79 2.21 Fresh >30m 22 2.41 2.79 2.66 Saprolite 14 1.82 2.32 2.10 Serpentinite 6 2.18 2.4 2.26 Ultramafic 11 1.93 2.37 2.09 105 **Total**

Table 7: Details of Density Measurements for the Melrose Deposit

A default density of 2.15/m³ was used for reporting tonnages for the Currajong Mineral Resources. The assumption of 2.15t/m³ is considered reasonable based on the Competent Person's experience with similar types of deposit, the chemical nature of the oxidised material and the supplied sample measurements. Tonnages are estimated on a dry weight basis with moisture content not being determined.

Classification Criteria

Mineral Resources have been classified primarily on the sample spacing and distribution with support from grade continuity, sample recoveries, QAQC outcomes and geological understanding. Other relevant factors have been taken into consideration e.g. drilling methods, density data.

Table 8 details the conversion of search pass number to Mineral Resource category.

Table 8: Resource Classification

Pass No	Category
1	Inferred
2	Inferred
3	Inferred
4	Inferred

Positives for the resource classification are:

- Reasonably close spaced drilling with variography indicating reasonable grade continuity
- Effective sampling methods with seemingly good sample recovery
- Simple geological model with limited complexity i.e. a flat-lying laterite
- Good topographic control
- Adequate QAQC data

Negatives for the resource classification

- Areas of wider spaced drilling
- No validation of AC drilling and sampling
- Change in analytical method requiring regressions to calculate scandium grades for interpolation
- No density data from the deposit and with possible sample selection issues and measuring methodologies associated with the Melrose data
- Lack of detailed metallurgical testwork for metal recovery
- Uncertainties over AC sample recoveries
- Spear sampling technique for some of the AC drilling

The classification appropriately reflects the Competent Person's view of the deposit.

Cut-off Grades

RIM advised HSC that a scandium cut-off grade of 100ppm is to be used for reporting the Mineral Resources. This is consistent with the cut-off grade used for its Murga North and Melrose deposits that are in the vicinity of Currajong (see RIM's ASX Announcement dated 5 September 2024). This cut off figure is also based on USGS pricing data for the period 2019 to 2023 which ranges from a low value of US\$2,100/kg to a high value of US\$3,900/kg for scandium oxide.

Pricing used by Sunrise, Scandium International and Platina Resources (all projects in the vicinity of RIM's Fifield Project) in their respective financial models and compared to the latest pricing data, the following is noted:

- o Sunrise [Syerston Deposit] used a US\$1,500/kg scandium oxide price in 2016 for a 300ppm cut-off.
- Scandium International [Nyngan Deposit] used a US\$2,000/kg scandium oxide price in 2016 for 100ppm cut-off.
- Platina Resources [Owendale / Burra Deposit] used a US\$1,550/kg scandium oxide price in 2018 for a 300ppm cut-off.

All three studies were undertaken assuming a high pressure acid leaching ("HPAL") processing route which is being considered by RIM along with atmospheric pressure acid leaching ("AL"). In addition RIM is considering other commercial arrangements such as offtakes/toll treating.

Mining, Metallurgical and Environmental Assumptions

It is assumed that the deposit will be mined by conventional shallow open pit methods. A simple truck and shovel operation is envisaged with possibly free digging of the overburden and mineralised material without the need for explosives. The model block size (20m by 20m by 2m) is the effective minimum mining dimension for this estimate. Any internal dilution has been factored in with the modelling and as such is appropriate to the block size. It is also assumed that groundwater impacts can be managed.

Perth specialist metallurgical services group, Independent Metallurgical Operations Pty Ltd (IMO), carried out sighter acid-leach test work focused on maximising scandium recovery at atmospheric pressures from the Melrose laterite-hosted mineralisation. As announced by RIM to the ASX (13 May 2024), the last round of test work demonstrated recoveries to solution of up to 90.1% scandium. No metallurgical test work has been undertaken on the Currajong mineralisation to date but Currajong displays geological similarities with Melrose and whilst further metallurgical work is required, it is reasonable to assume that metallurgical results for Melrose are likely to be broadly applicable to Currajong.

RIM considers that the primary metallurgical method for the Currajong mineralisation would be via an acid leaching process (at either atmospheric pressure or high pressure) followed by a solvent extraction resin exchange process to recover scandium/scandium oxide from solution. RIM is also considering the option of toll treating the mined material at nearby other potential operations. This will preclude the need for a stand-alone processing plant and is reflected in the cut-off grade used for the Mineral Resources.

The landscape comprises flat semi-arid terrain with broad watercourses and seasonal water flows. Land use is mainly agriculture with both stock and grain and there are large flat areas for tailings and ROM pad development. It is assumed that screening would be done using wet saprolite after an appropriate size reduction. Dust generated during size reduction and screening would be minimal. It is also assumed that any acid leaching would be in sealed tanks and that spent acid would be neutralised with an alkaline substance such as limestone. Despite the mined material being oxidised the XRD analysis identified low levels of pyrite in the 1-5% range and will likely require an acid mine drainage containment programme. No significant water was encountered with the drilling.

Resource Estimates

The maiden Mineral Resources for the Currajong scandium deposit are reported constrained to the mineral wireframe on a centroid in/out basis with a 100ppm scandium cut-off grade (Table 9). The estimates also report for scandium oxide which has been calculated using a conversion factor of Sc ppm x $1.5338 = Sc_2O_3$ ppm. The Mineral Resources are classified as Inferred Resources.

Category Mt Sc ppm Sc₂O₃ ppm Sc T Sc₂O₃ T 261 639 979 Laterite 3.8 170 193 1,420 **Ultramafic** 11.3 126 2,183 2,059 3,163 **Total** 15.1 137 210

Table 9: Currajong Inferred Mineral Resources

(Variability of sums occur due to rounding to appropriate level of significant figures)

Figure 11 shows a plan view of the scandium block grade distribution for the Currajong Mineral Resources.

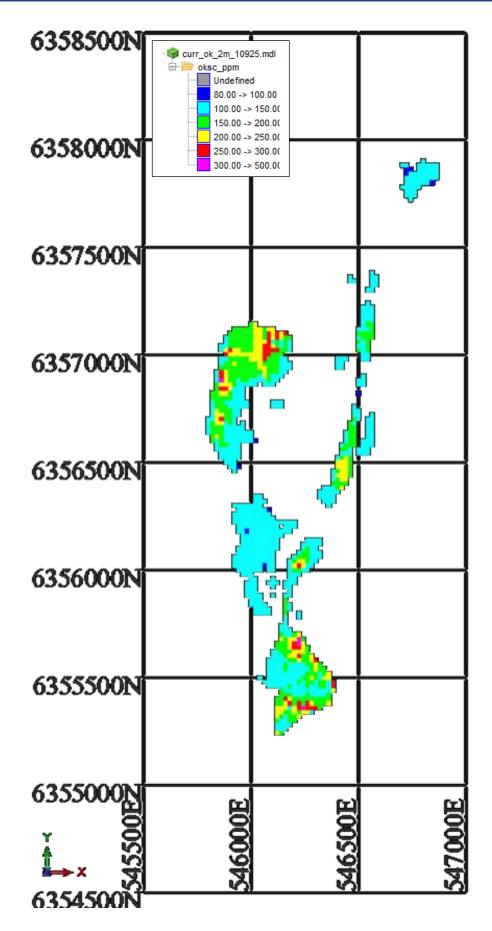


Figure 11 Scandium Block Grade Distribution for the Currajong Mineral Resources

The scandium grade-tonnage plot for the LAT1 mineralisation is included as Figure 12.

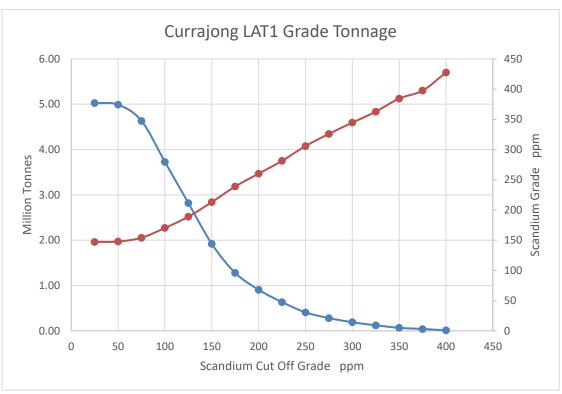


Figure 12 Scandium Grade Tonnage Data for the LAT1

The scandium grade-tonnage plot for the UM1 mineralisation is included as Figure 13. The steep gradient for the tonnage indicates the size of the Mineral Resources has considerable sensitivity to cut-off grade.

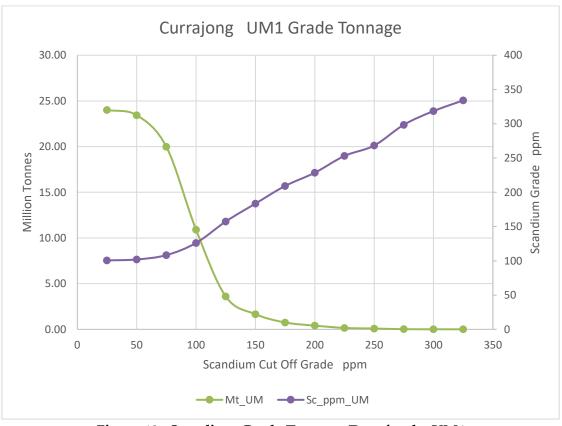


Figure 13 Scandium Grade Tonnage Data for the UM1

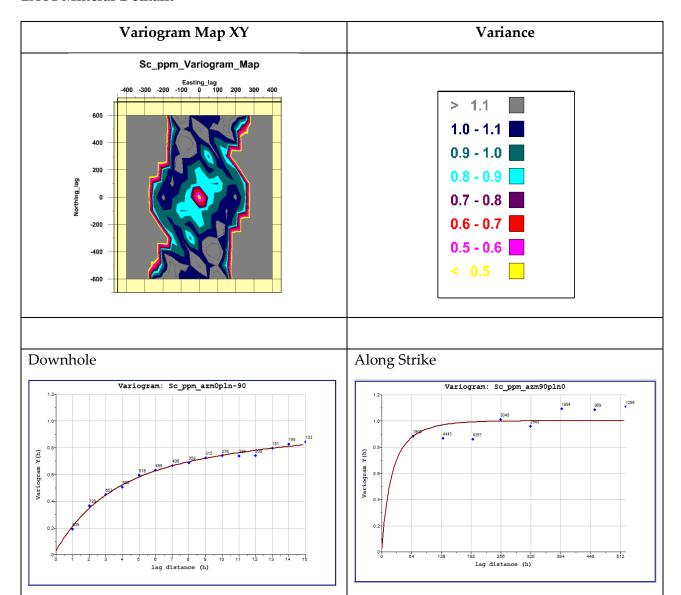
Further work is recommended at Currajong with future work comprising:

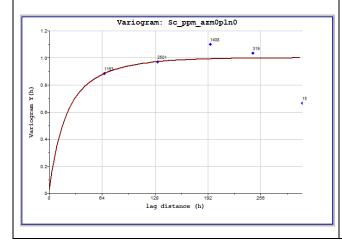
- 1. Metallurgical testwork to confirm metal recoveries for both mineral types at Currajong. This will include analysis for any potential penalty elements.
- 2. Complete a set of diamond twin holes to validate the AC drilling, collect density data and provide a bulk sample for metallurgical testwork.
- 3. Complete further drilling to both better define and expand the Mineral Resources. It is suggested that a sub-area of LAT1 and UM1 be drilled at a closer spacing eg 25m to confirm both geological definition and grade continuity of each deposit type.
- 4. Review the lateral margins of the LAT1 and LAT2 deposits for potential incremental extensions to the mineralisation.
- 5. Investigate via deeper drilling the potential for the anomalous scandium values to persist at depth within unweathered crystalline ultramafic/pyroxenite. Look to better understand the nature of the scandium mineralisation i.e. primary fresh rock grade versus weathered enrichment.
- 6. Consider evaluation of other elements both as possible by-products and penalty elements.

Additional information is supplied in Appendix 1.

Simon Tear
Director and Consulting Geologist
H&S Consultants Pty Ltd

The information in this report that relates to Exploration Results is based on, and fairly represents, information and supporting documentation prepared by David Hutton, Managing Director for Rimfire Pacific Mining Limited. Mr Hutton is a Fellow of the Australasian Institute of Mining and Metallurgy (FAusIMM) and he has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which has been undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Hutton consents to the inclusion in this release of the matters based on the information in the form and context in which they appear.

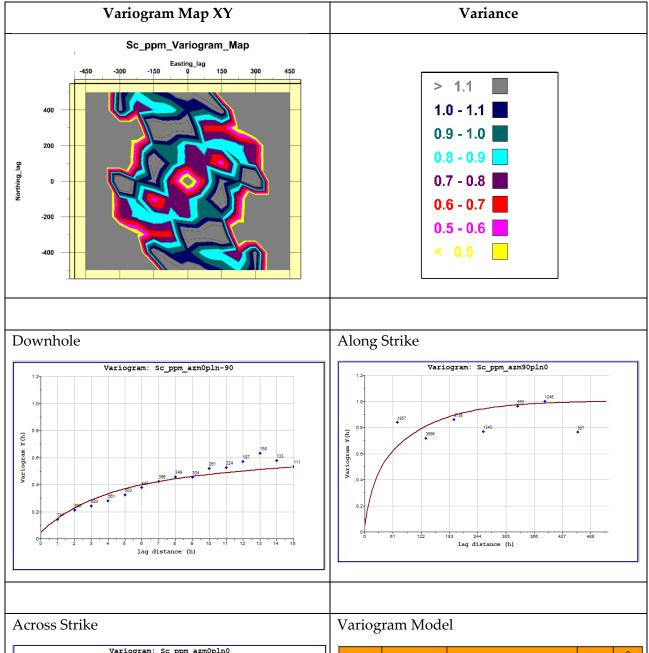

The data in this report that relates to Mineral Resource estimates is based on information compiled and evaluated by Mr Simon Tear who is a Member of The Australasian Institute of Mining and Metallurgy (MAusIMM) and who has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the "JORC Code"). Mr Tear is a Director of H&S Consultants Pty Ltd and he consents to the inclusion in the report of the Mineral Resource in the form and context in which they appear.

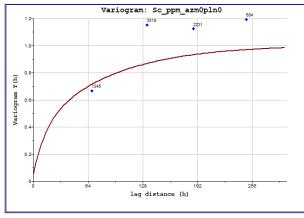

Appendix 1 Additional Information

Variography

LAT1 Mineral Domain

Across Strike




Variogram Model

°¤	дπ	C	дц	дπ		
Metal¤	°µ .	Nugget¤	c1¤	c2¤	c3¤	д
Sc¤	type¤	°¤	exp¤	ехр¤	exp¤	щ
LAT1¤	variance¤	0.03¤	0.47¤	0.13⊭	0.37¤	дц
°¤	rangeX¤	°¤	38.5⊭	67¤	117¤	д
°¤	rangeY¤	μ	52¤	167¤	266⊭	д
°¤	rangeZ¤	°¤	8¤	24⊭	52¤	д
°¤	Z-Rotation¤	°¤	°¤	°¤	дц	-44¤
°#	Y-Rotation¤	°¤	°¤	°¤	°μ	0⊭
°#	X-Rotation¤	°¤	°¤	°¤	å	0⊭

UM1 Mineral Domain

°¤	٩	C	٩	μ		
Metal≍	°¤	Nugget¤	c1¤	c2¤	c3¤	щ
SC⊭	type¤	°¤	exp¤	exp¤	exp¤	д
UM1¤	variance¤	0.05¤	0.35¤	-0.067¤	0.67¤	дч
°¤	rangeX¤	°¤	42.5¤	103⊭	248⊭	дч
°¤	rangeY¤	°¤	52.5¤	70¤	322¤	дч
°¤	rangeZ¤	°¤	10⊭	162⊭	177¤	дн
°¤	Z-Rotation¤	°¤	۳	°¤	ďμ	11¤
°¤	Y-Rotation¤	°¤	°⊭	μ	μ°	0¤
°#	X-Rotation¤	°¤	ਖ	°¤	٩	0¤

Estimation Results

The table below details the Currajong estimation results for the different search pass categories for block centroids within the mineral wireframe at a 100ppm Sc cut-off.

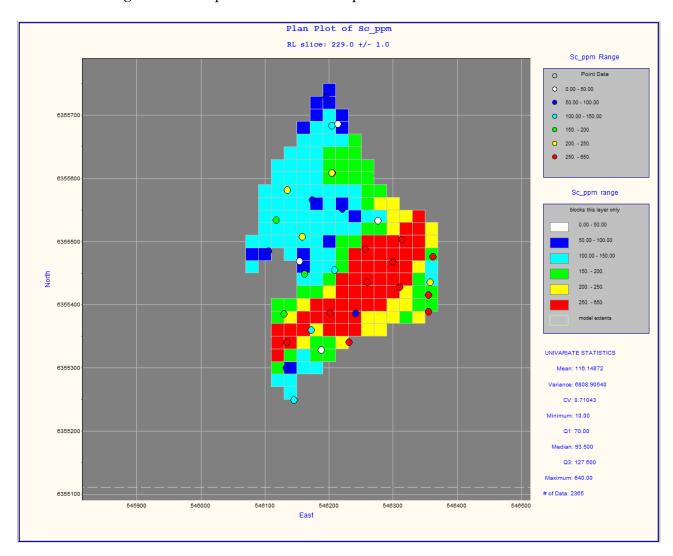
Estimation Resul	ts for	Sc >= 1	00ppm
-------------------------	--------	---------	-------


Type	Minzone	Pass No	Volume	Tonnes	Sc_ppm	Sc Tonnes	Density t/m³
Laterite	LAT2	Pass 4	7,200	15,480	103	1.6	2.15
	LAT1	Pass 1	559,200	1,202,280	199	239.3	2.15
		Pass 2	896,800	1,928,120	161	309.7	2.15
		Pass 3	247,200	531,480	149	79.2	2.15
		Pass 4	34,400	73,960	117	8.7	2.15
	Sub Total		1,737,600	3,735,840	171	637.0	2.15
	Total		1,744,800	3,751,320	170	639	2.15
Type	Minzone	Pass No	Volume	Tonnes	Sc _ppm	Sc Tonnes	Density t/m3
Ultramafic	UM3	Pass 1	7,200	15,480	118	1.8	2.15
		Pass 2	32,000	68,800	135	9.3	2.15
	Sub Total		39,200	84,280	132	11.1	2.15
	UM1	Pass 1	1,264,800	2,719,320	127	346.2	2.15
		Pass 2	1,587,200	3,412,480	121	413.9	2.15
		Pass 3	1,586,400	3,410,760	128	434.9	2.15
		Pass 4	608,000	1,307,200	132	172.8	2.15
	Sub Total		5,046,400	10,849,760	126	1,368	2.15
	UM2	Pass 1	157,600	338,840	111	37.7	2.15
		Pass 2	16,000	34,400	107	3.7	2.15
	Sub Total		173,600	373,240	111	41.4	2.15
	Total		5,259,200	11,307,280	126	1,420	2.15
Combined		Inferred	7,004,000	15,058,600	137	2,059	2.15

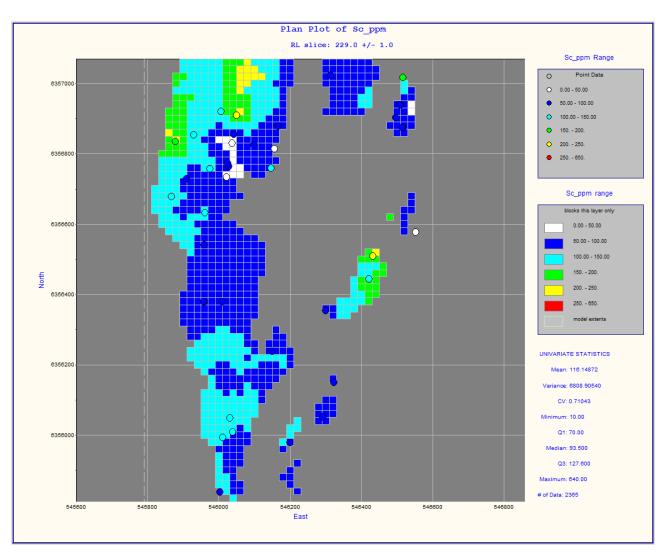
Type	Minzone	Category	Volume	Tonnes	Sc_ppm	Sc Tonnes	Density t/m³
Laterite	Total	Inferred	1,744,800	3,751,320	170	639	2.15
Ultramafic	Total	Inferred	5,259,200	11,307,280	126	1,420	2.15
Combined		Inferred	7,004,000	15,058,600	137	2,059	2.15

(use of significant figures does not imply accuracy)

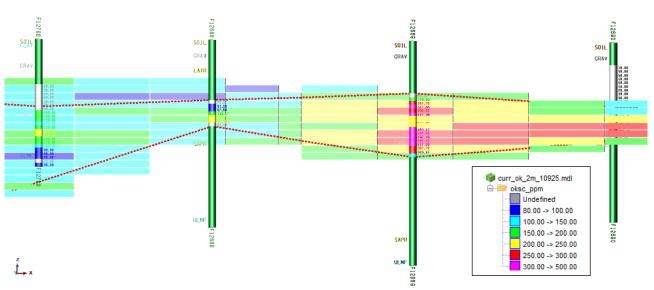
The figure below is a graphic representation of the global scandium block grades for Currajong. Grey blocks represent block grades >0 <80ppm. The red lines are the section lines displayed subsequently.



Global Block Grade Distribution for Scandium (with drillhole collars)

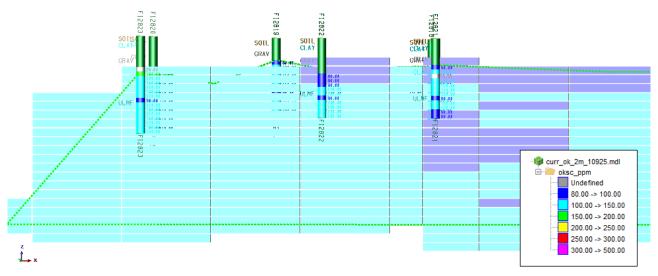

Block Model Validation

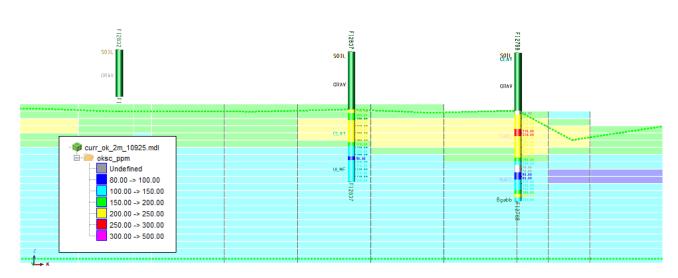
Visual comparison of composite values with block grades showed reasonable results consistent with the classification of the Mineral Resources. The figure below shows a plan view of the LAT1 scandium block grades in comparison with the composite values for Passes 1 to 4.


2D Comparison of Block Grades and Composite Values for Scandium 229mRL

The figure below shows a plan view of the UM1 scandium block grades in comparison with the composite values for Passes 1 to 4.

2D Comparison of Block Grades and Composite Values for Scandium 229mRL

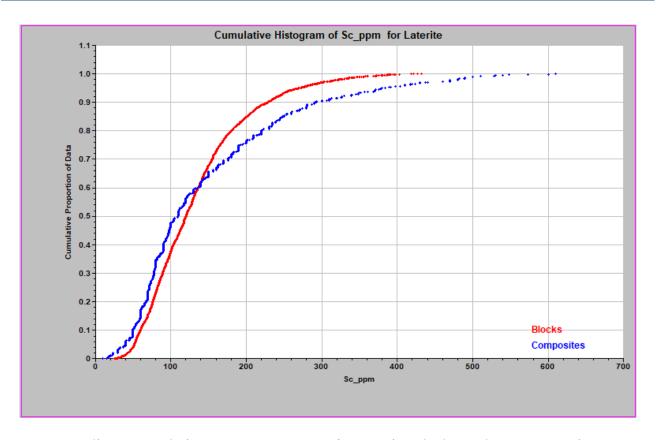

The figure below is a cross section of the LAT1 deposit showing the scandium block grades against the drill hole assay values. The red dash line is the upper and lower contacts of the laterite unit. The drillhole trace features the scandium assay values on the right hand side and the labelled lithology on the left hand side.


LAT1 Mineral Zone Cross Section 6355445mN – Scandium

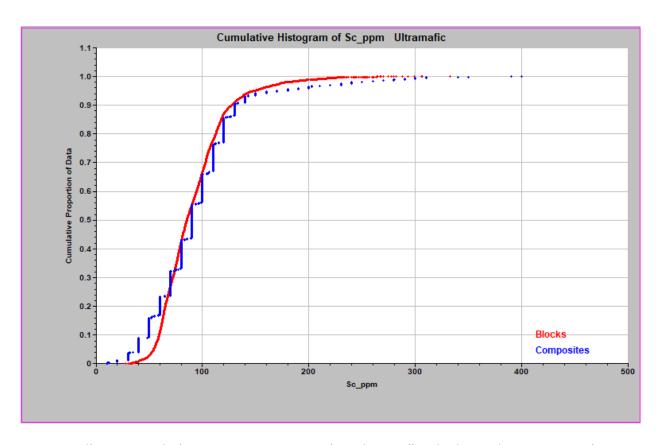
The figure below is a cross section of the UM1 deposit showing the block grades against the drill hole grades. The green dash line is the upper and lower contacts of the ultramafic unit. The drillhole trace features the scandium assay values on the right hand side and the labelled lithology on the left hand side.

UM1 Mineral Zone Cross Section 6356080mN - Scandium

UM1 Mineral Zone Cross Section 6356860mN - Scandium


The block means for all the modelled domains are slighter lower than the composite means as shown in the tables below. This is expected and is consistent with expected outcomes from the grade interpolation.

Block Grade/Composite Data Scandium Statistical Comparison


	LAT1		LA	T2
	Сотр	Block	Сотр	Block
No. Data:	892	2937	28	108
mean:	153.4	147.1	132.9	107.2
SD	110.2	66.2	84.2	30.1
variance:	12150	4391	7088	910
CV:	0.72	0.45	0.63	0.281
Minimum:	10	30.2	30	72.2
Median:	112.2	132.4	102.9	94.2
Maximum:	640	453.4	279.4	222.4

	UM1		UM2		UM3	
	Сотр	Block	Сотр	Block	Сотр	Block
No. Data:	802	13946	592	5634	51	549
mean:	108.1	100.5	75.6	68.5	53.3	61.7
SD	52.8	32.3	24.5	14.1	25.1	16.4
variance:	2787	1040	599	198	631	268
CV:	0.49	0.321	0.32	0.206	0.47	0.265
Minimum:	10	28.1	20	30	15.4	26
Median:	110.0	97.1	70.0	65.2	53.9	58.7
Maximum:	430	334.3	180	149.5	150	107.7

Comparison of cumulative frequency curves for the scandium block grades and composite values for both mineral types is consistent with there being no significant issue with the grade interpolation (see the two figures below).

Scandium Cumulative Frequency Curves for Laterite Block Grades & Composites

Scandium Cumulative Frequency Curves for Ultramafic Block Grades & Composites

Grade-tonnage data for the LAT1 and UM1 mineral domains are included in the two tables below. The graphical representations of these data are included in the main body of the text.

Scandium Grade Tonnage Data for Laterite Type

Cutoff	Mt	Sc_ppm	Sc Tonnes
25	5.03	147.06	739.3
50	4.99	147.83	737.7
75	4.63	154.08	713.7
100	3.73	170.32	634.5
125	2.82	188.83	532.5
150	1.92	213.08	409.0
175	1.28	238.88	305.7
200	0.91	260.11	235.9
225	0.63	281.36	178.5
250	0.41	305.77	125.0
275	0.28	325.95	91.8
300	0.19	344.58	65.8
325	0.12	362.67	44.5
350	0.07	384.44	25.8
375	0.04	397.52	16.8
400	0.01	427.61	4.8

(the use of significant figures does not imply accuracy)

Scandium Grade Tonnage Data for Ultramafic Type

Cutoff	Mt	Sc_ppm	Sc Tonnes
25	24.01	100.56	2,414.2
50	23.44	101.97	2,390.2
75	19.97	108.29	2,163.1
100	10.90	126.05	1,374.5
125	3.60	157.36	566.2
150	1.66	183.49	304.7
175	0.75	209.23	157.2
200	0.41	228.54	93.0
225	0.16	253.06	39.3
250	0.09	268.20	23.6
275	0.02	298.56	5.9
300	0.01	318.54	2.5
325	0.00	334.09	1.2

(the use of significant figures does not imply accuracy)

JORC Code, 2012 Edition – Table 1 Currajong Scandium Prospect

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary		
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	Aircore (AC) Currajong Pro 10,410 was co 1988-2002 94 Currajong but samples found Currajong Currajong	spect since 2 mpleted have RC holes for were not as to reassay. I Company Helix Black Range Minerals Rimfire Rimfire Rimfire Rimfire Rimfire Rimfire	2003. A se been upor a total sayed from 1988 2000 2000 2000 2000 2018 2018 2020 2025

to carry out the sampling at the total of 316 holes since 2003 for used as part of this MRE. Between al of 3,489m were also drilled at for scandium at the time and no details are summarised below:

Location	Company	Year	Туре	No of holes	Metres
Currajong	Helix	1988	RC	80	2,832
	Black Range				
Currajong	Minerals	2000	RC	8	232
Currajong	Rimfire	2002	RC	6	425
Currajong	Rimfire	2003	AC	43	1,741
Currajong	Rimfire	2018	AC	11	522
Currajong	Rimfire	2022	AC	62	1,689
Currajong	Rimfire	2025	AC	200	6,458

- ailable for the RC holes drilled in
- For AC drilling in 2003 samples were collected at 1m intervals from the drill rig. Sub-samples taken via 40mm spear extraction. AC samples composited over 4m to approximately 2kg.
- For AC drilling in 2018 consecutive 1m samples were collected from the cyclone on the rig in buckets then divided through a two tier (75:25) riffle splitter to create a composite sub-sample of approximately 2-3kg representing 2 drilled meters for assay. The bulk material collected by the metre in plastic bags.
- For AC drilling in 2022 drill cuttings for each metre drilled were placed

Criteria	JORC Code explanation	Commentary
		into large individual buckets for geological logging and sampling. A PVC spear was used to obtain a sample of every drilled metre. Either a single metre sample or a 3-metre composite sample were scanned at site with a portable XRF unit to ascertain the concentration of elements of interest before dispatching selected intervals to the laboratory for analysis. For AC drilling in 2025– each drillhole was geologically logged and a nominally 1/8th representative sample was split from each metre of drilled material via a rig mounted cone splitter beneath the cyclone. The 1m split samples were scanned at site with a portable XRF unit to ascertain the concentration of elements of interest such as Sc, Co and Ni before dispatching selected intervals to the laboratory for analysis. Industry standard sample preparation and assaying was conducted at ALS Pty Ltd in Orange, NSW and at SGS Pty Ltd in Orange, NSW. All samples from 2003 to 2022 and 95% from 2025 were submitted to ALS Pty Ltd in Orange NSW for sample preparation and analysis including sample drying, sample crushing and pulverising 500g – 85%<75um prior to sub-sampling for an assay sample of 0.7g of the pulverised sample. 5% of samples from the 2025 drilling were submitted to SGS Pty Ltd in Orange NSW for sample preparation and analysis including sample drying, sample crushing and pulverising prior to sub-sampling for an assay sample of ~1g of the pulverised sample Analysis at ALS was completed using total digestion techniques ME-XRF12n and ME-ICP61. Analysis at SGS also used total digestion techniques coded GO_XRF72C13 which analysed a suite of major and minor element oxides utilising a borate fusion followed by an XRF finish. Samples were analysed for a multi-element suite of base metals including scandium. Samples that were determined to be anomalous in Sc using the ME-ICP61 technique were subsequently re-assayed using the ALS XRF12n technique. The AC samples were typically 1-3kg in weight. At Currajong, scandium (nickel and cobalt) mineralisation occurs

Criteria	JORC Code explanation	Commentary
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 AC and RC drilling was carried out at the Currajong Prospect. All AC holes since 2022 and RC holes in 1988 are drilled vertically. AC and RC holes between 2000-2018 are angled holes predominantly dipping -60° to the west (270°) Aircore drilling was carried out using a 3½ inch diameter AC blade bit. No information is available for drill diameters for the RC holes.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 AC drilling - An approximate estimate of total sample quantity was recorded with each 1m interval by comparing volumes within each bucket or calico bag of sample yielded from the cyclone. A visual estimate of 0, 25, 50, 75, 100, 125% was recorded for each metre. The following measures were taken to maximise sample recoveries and sampling representativity; AC drilling (2025): the drillers adjusted penetration and air pressure rates according to ground conditions to optimise recoveries. The cyclone was cleaned regularly, and holes were reamed in between rod changes to reduce contamination. The entire drillhole was sampled at 1m intervals. To ensure sample representativity all 1-metre AC samples were collected via cone splitter which is mounted within the lower portion of the rig-mounted cyclone. AC drilling (2003-2018-2022): the drillers adjusted penetration and air pressure rates according to ground conditions to optimise recoveries. The rig cyclone was cleaned regularly, and holes were reamed in between rod changes to reduce contamination. The entire drillhole was sampled for analysis. To ensure sample representativity every metre of AC drilling was collected in individual buckets directly from the rig cyclone for logging and spear sampling. Due to the qualitative sample recovery measuring technique it is not possible to establish whether any relationship exists between sample recovery and scandium grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All AC samples were geologically logged to a level of detail sufficient to support appropriate Mineral Resource estimation. All AC chip trays were photographed. Geological logging is largely qualitative. All relevant intersections have been geologically logged for weathering intensity, colour, lithology primary and secondary, lithology qualifiers, and comments.

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 1m AC (2025) sub-samples were cone split within the cyclone at the time of drilling. AC (2018-2023) samples were collected on an individual metre basis into individual buckets directly from the rig cyclone for logging and spear sampling. A PVC spear was used to obtain a sample of every drilled metre. The spear was passed through the sample from top to bottom of bucket to ensure that the speared sampled was representative of the entire metre of drill cuttings. The spear sample was then placed into a calico bag. 3-metre composites were taken during the initial reconnaissance phase. Once geologists had a better understanding of the local geology and geochemistry (handheld XRF), they would take 1m samples through zones of interest ie laterite zones. All AC samples were dry. AC samples were submitted to ALS Pty Ltd for sample preparation and analysis using industry standard and appropriate techniques, as follows; ALS Method WEI-21 – Received weight ALS Method PRY21 – Oven drying of samples at 105°C. ALS Method PUL23 - Pulverise up to 3kg to 85% passing 75 microns – 0.7g samples split for digestion and analysis AC samples submitted to SGS Pty Ltd for sample preparation and analysis using industry standard and appropriate techniques, as follows; SGS Method G_WGH_KG – sample weight SGS Method G_DRY_KG – Sample drying at 105°C per kg. SGS Method G_PUL - Pulverise, nominal 85% passing 75um, Cr Steel, 1.5-3.0kg – 1g subsample split for digestion and analysis SGS Method G_PUL - Pulverise, nominal 85% passing 75um, Cr Steel, 1.5-3.0kg – 1g subsample split for digestion and analysis SGS Method G_PHY02V - Loss on Ignition (LOI), TGA, variable wt, various temp All sampling equipment was cleaned between samples. Nominally blank samples were inserted into the sample stream on a 1 in 40 basis to provide an assessment of any sample contamination before being submitted to the

Criteria	JORC Code explanation	Commentary
		 No independently selected laboratory duplicates were taken. All sample and sub-sample sizes for the drilling are considered appropriate to the grain size of material being sampled.
Quality of assay data and laboratory tests.	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 technique. Samples submitted for assay at the laboratory were generally between 1-3kg. All aircore samples from 2003-2018-2022 were analysed using 4 acid
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All significant intersections have been verified by both Rimfire's Exploration Manager, Peter Crowhurst and Managing Director, David Hutton. No twin holes have been drilled at Currajong. Sampling data was recorded by hand onto field sheets at the sample site. All sampling sheets are scanned and stored on Company's OneDrive (Cloud server). This field data was entered into a series of Excel spreadsheets and saved on the Company's OneDrive (Cloud server). Field data was double checked by a senior geologist and/or Exploration Manager for any errors. Geological logging was recorded directly into the LogChief program during drilling and backed up on the

Criteria	JORC Code explanation	Commentary
		 Company's OneDrive (Cloud server). In addition, the Company utilises Rock Solid Data Pty Ltd, a third-party data management company – to conduct quality control checks on all of Rimfire's exploration data before being stored on their secure offsite data servers (remote back up). Assay results are reported by the lab in a digital format suitable for direct loading into a Datashed database with the 3rd party expert consulting group. Owing to higher XRF assays for scandium compared to ICP assays, a simple correction factor of a 10% increase was applied to the ICP data to convert the ICP values to XRF values for subsequent use in the geological interpretation and the grade interpolation. An additional adjustment to the assay data was the replacement of below detection assays with half the lower detection limit.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole locations at Currajong were all initially recorded using a handheld Garmin GPS with a nominal accuracy +/- 3m. A selection of 126 AC hole locations was recorded by specialist surveying company – Arndell Surveying Pty Ltd (Parkes NSW based) using a Differential GPS with nominal accuracies of +/- 1mm in X, Y and Z. This confirmed the relative accuracy of the handheld GPS data. All coordinate data is in national grid format with the projection of MGA94 Zone 55. A 3D topographic surface was generated from 5m spaced LiDAR data. Drillhole collars were draped over the surface to enable collar elevation to match topography. In an area of flat relief this is adequate for the MRE. The quality of topographic control at Currajong is considered to be reasonably accurate.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	

Criteria	JORC Code explanation	Commentary
		representing 2 drilled meters for assay. The bulk material collected by the metre in plastic bags.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The drilling of predominantly vertical holes into flat lying laterite-hosted nickel-cobalt-scandium mineralisation has ensured there is no sampling bias. The relationship between the drilling orientation and the orientation of key mineralised structures is considered not to have introduced a sampling bias.
Sample security	The measures taken to ensure sample security.	 Drill samples were collected in calico bags at the drill site by Rimfire personnel and brought to Rimfire's Fifield field base for storage and preparation of sample submission paperwork. The Fifield premises are locked after hours and monitored with security cameras. Calico bags are placed inside zip-tied double large green plastic bags and delivered directly to the laboratory in Orange, NSW by company personnel. At ALS and SGS Orange, the samples are handed over to ALS and SGS personnel who acknowledge receipt of the samples with the creation of a work order. No third-party transporters are used to deliver samples to the laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 No independent reviews or audits have been completed. The sampling techniques and data have been reviewed by senior company personnel including the Exploration Manager and Managing Director with no issues identified.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Currajong Prospect lies on Exploration Licence EL8935 at Fifield NSW which is wholly - owned by Rimfire Pacific Mining Limited. EL8935 forms part of the Avondale Project which is subject to an Earn-In and Joint Venture Agreement with Golden Plains Resources Pty Ltd (GPR) whereby GPR can earn up to a 75% interest by completing expenditure of \$7.5M over 4 years. Currajong lies on Private Freehold Land. No Native Title exists. The land is used primarily for grazing and cropping. The tenement is in good standing, and all work is conducted under specific approvals from NSW Department of Planning and Energy, Resources and Geoscience.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Currajong has been historically explored for cobalt and platinum. Drill hole samples prior to 2018 were not assayed for Sc. Consequently, there has been no scandium–focused exploration conducted throughout the Currajong area prior to Rimfire's scandium–focused activities commencing in 2022.
Geology	Deposit type, geological setting and style of mineralisation.	 The deposit type is largely that of a residual secondary deposit, the result of multiple weathering events of ultramafic rocks. In a regional context Currajong is part of a magnetic ultramafic intrusive complex of an Early Silurian-age. It has been demonstrated from previous drilling that the pyroxenite component of the ultramafic at both the Murga and the Melrose Prospect is intimately associated with scandium mineralisation (See Rimfire ASX Announcement dated 6 December 2023). The Currajong area generally lacks geological exposure, although available information indicates the bedrock geology across the project is a dominated by multiple bodies of mafic/ultramafic units (Alaskan – type) that are interpreted to locally intrude the sedimentary and felsic intrusive host rocks. There is no outcrop of weathered ultramafic over the resource area as it is covered by gravel and soil. The style of mineralisation is twofold: a flat-lying residual (secondary) deposit comprising variably of, ferruginous and manganiferous clay developed in a lateritic profile. The laterite is enriched in Sc, (Ni & Co) that has developed,

Criteria	JORC Code explanation	Commentary
		via weathering of ultramafic rocks (microdiorite, gabbro, pyroxenite, wehrlite, dunite) that host primary anomalous Sc, Ni & Co mineralisation ('Laterite type'). • a flat-lying residual deposit of weathered clayey serpentinised ultramafic with enriched primary Sc ('Ultramafic type'). • The ultramafic and mafic intrusive rocks are bounded to the east against a felsic intrusive and volcaniclastic sediments to the west. The ultramafic rocks are heavily serpentinised with magnetite commonly present throughout. • Historic drilling has shown that the host ultramafic in the local area is also platiniferous. • The geological setting of Currajong has been determined by detailed geological logging of all drill holes, interpretation of regional magnetic data and comparison with publicly available geological reports for the adjacent Sunrise and Burra (Owendale) deposits. Rimfire's geological interpretation is consistent with similar deposits in the district and as such, Rimfire has a high level of confidence in the geological model. • Geological observations and geochemical assay data have been used to determine weathering domain boundaries and lithological variations.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Exploration results previously reported. All collar data has been tabled amongst the ASX Announcements previously released to the ASX on the following dates; 11 August 2025 23 June 2025 8 May 2025 2 April 2025 3 May 2018 5 March 2018
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of 	See section above.

Criteria	JORC Code explanation	Commentary
	 such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Downhole lengths are reported only and therefore true width is not known. As the deposit is largely a surficial residual deposit and most holes are vertical the downhole lengths are likely to be very similar to the true widths.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	See above list of ASX Announcements for details.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results. 	See above list of ASX Announcements for details.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Regional aeromagnetic data covers all of Currajong. The data shows some of the ultramafic intrusive units which underly the scandium—mineralised laterites. Consequently, the aeromagnetic data has been used by Rimfire to generate geological maps of the various prospect areas as there is no outcrop over the prospect. Other than the aeromagnetic data there is currently no other substantive exploration data that is meaningful and material to report.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 While no further drilling is planned at the time of this report, Further work is recommended at Currajong with future work comprising: Metallurgical testwork to confirm metal recoveries for both mineral types at Currajong. This will include analysis for any potential penalty elements. Complete a set of diamond twin holes to validate the AC drilling, collect density data and provide a bulk sample for metallurgical testwork. Complete further drilling to both better define and expand the Mineral Resources. It is suggested that a sub-area of LAT1 and UM1 be drilled at a closer spacing eg 25m to confirm both

Criteria	JORC Code explanation	Commentary
		 geological definition and grade continuity of each deposit type. Review the lateral margins of the LAT1 and LAT2 deposits for potential incremental extensions to the mineralisation. Investigate via deeper drilling the potential for the anomalous scandium values to persist at depth within unweathered crystalline ultramafic/pyroxenite. Look to better understand the nature of the scandium mineralisation i.e. primary fresh rock grade versus weathered enrichment. Consider evaluation of other elements both as possible byproducts and penalty elements.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Data collated by Rimfire from hardcopy geology logging was transcribed into LogChief software which has set drop down codes to provide consistency and to prevent keying errors. Responsibility for the Exploration Results resides with Rimfire. Data was supplied to HSC as a series of CSV files for collars, surveys, alteration, lithology and assays (XRF & ICP). HSC compiled an MSAccess databases for the deposit that was then linked to the Surpac mining software for further work. Database checks completed by HSC include: Data was imported into an MSAccess database with indexed fields, including checks for duplicate entries, unusual assay values and missing data. Additional error checking using the Surpac database audit option for incorrect hole depth, sample/logging overlaps and missing downhole surveys. Manual checking of logging codes for consistency, plausibility of drill hole trajectories and assay grades. Any database errors were referred back to Rimfire for correction.

Criteria	JORC Code explanation	Commentary
		 Drilling data was essentially from three campaigns 2018, 2022 & 2025; the former set comprised multi-element ICP analysis, and the latter set comprised XRF analysis. Owing to the higher XRF assays for scandium a simple +10% correction factor was used to convert the ICP values to XRF values for subsequent use in the geological interpretation and the grade interpolation. Assessment of the data confirms that it is suitable for resource estimation.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Peter Crowhurst, Exploration Manager for Rimfire completed numerous site visits, undertook and supervised the logging and sampling, and all geological mapping. No site visit to the project was completed by HSC due to time and budgetary constraints.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Interpretation of the drillhole database allowed for the generation of 3D mineral constraining solids on 50m spaced sections with an approximate E-W orientation for the deposit. The section lines were rotated 10° clockwise to line up with the drill spacing. Definition of the mineral wireframes was relatively straightforward with snapping of strings to drillholes at the appropriate downhole position allowing for a reasonable level of confidence. A total of 5 mineral wireframes were interpreted comprising the two mineral types. The first is a laterite/saprolite hosted oxide body of elevated scandium, nickel, cobalt, manganese and iron with a basal limit related to oxidation level (subsequently referred to as the 'Laterite Type'). The other mineral type was weakly weathered serpentinite—altered ultramafic with elevated scandium mineralisation (subsequently referred to as the 'Ultramafic Type'). In both instances a nominal scandium cut-off grade of 50-60ppm was used to help define the mineral zones in conjunction with the lithological logging and geological sense. Co, Ni, Fe & Mn assays were also used for the Laterite Type. 2 mineral domains represent the Laterite Type, and 3 mineral domains were created for the Ultramafic Type. A 2D geology map and an airborne TMI magnetic image were draped over 3D topography to assist with constraining the lateral limits of the mineral wireframes. The drilling has generally reached the base of mineralisation particularly for the laterite type. Some of the earlier holes stopped short

Criteria	JORC Code explanation	Commentary
Dimensions	• The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	of the mineral base. An occasional drillhole has penetrated into the underlying fresh rock ultramafic units. Some of the drill intercepts in the ultramafic hosted mineralisation appear to suggest a primary level of enrichment that may or may not have been modified by subsequent oxidation/weathering. • Where the base of mineralisation was not necessarily intersected in the drilling the interpreted basal surface was horizontally extrapolated from nearby holes which had passed through the mineralisation. • The basic geological model of a flat-lying residual deposit, albeit of two different types, appears to be reasonable and appropriate for resource estimation. • Alternative interpretations are possible for the mineral zone definition but are unlikely to significantly affect the estimates. • The style of mineralisation and the orebody type mean that there is a strong horizontal control to the metal grades & geological continuity. • The principal factors influencing continuity of grade and geology are the degree of weathering, the lateral extent and chemical nature of the underlying ultramafic units. • Mineralisation is essentially flat lying. • The Mineral Resource has an overall strike length (N-S) of 2,750m, an across strike length (E-W) of 800m, and a thickness range of 1 to 42m with an average thickness of 13m. • Mineralisation outcrops but is not exposed with a minimum depth below surface of 3m and maximum depth below surface of 60m.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. 	 The estimation technique employed by HSC for the deposit was a standard 3D block model with Ordinary Kriging of composited scandium assay data. Surpac mining software was used for the geological interpretation, compositing and the block model validation and reporting. The variography and grade interpolation was completed using the GS3M software. 1m composites were generated using the mineral wireframe and the 'fixed length' option in Surpac. The interpreted mineral zones were treated as hard boundaries during estimation ie for composite selection and block grade interpolation. The 1m sample length was based on the dominant sample interval of 1m. The Mineral Resources are maiden Mineral Resources. There are no previous estimates or any production. Only scandium was modelled.

Criteria	JORC Code explanation	Commentary
	 Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 HSC considers the Ordinary Kriging technique to be an appropriate estimation technique for this type of mineralisation based on visual observations of the drilling data and the analysis of summary statistics for the composite data. No top cuts were applied to the data due to an absence of extreme values and the presence of low coefficients of variation (CV = standard deviation/mean) for the modelled element (CVs <0.75). A total of 2,365 1m composites were used to estimate metal grades; 943 composites for the laterite domains and 1,422 for the ultramafic domains. Domaining was limited to the 3D outline of the mineral zones. Based on preliminary metallurgical test work undertaken for the nearby Melrose Scandium Deposit, which bears some geological similarities to the Currajong Prospect, it is assumed that cobalt and nickel which also occurs at Currajong, could be recovered as by-products, although further work is needed to confirm this. 3D variography with orthogonal directions was performed using the composite data. Distinct grade continuity was definable for scandium. Drill holes are spaced on a relatively regular grid with a nominal spacing of 50m by 50m. Downhole sample intervals ranged from a dominant 1m to minor amounts of 2, 3 and 4m samples. Block dimensions are 20m by 20m in the X & Y directions with 2m in the Z direction with no sub-blocking. The X and Y dimensions were chosen based on the 50m spaced drilling. The Z dimension was based on possible mining scenarios and the geometry of the mineralisation. Discretisation was set to 5 x 5 x 2 (X, Y & Z respectively). Grade interpolation used an expanding 3D search pass strategy with the search parameters taking in the geometry of the mineralisation, the drill spacing and the variography. Modelling consisted of one set of 4 search passes for each deposit type. The minimum search used for the Laterite Type (Pass 1) was 50m by 100m (X & Y) by 2m (Z) expanding to a Pass 4

Criteria	JORC Code explanation	Commentary
		 The maximum extrapolation of the estimates is 300m for the Laterite Type and 200m for the Ultramafic Type. No other elements such as by-product Ni and Co, or any deleterious elements have been factored in. The final block model was reviewed visually by HSC, and it was concluded that the block model fairly represents the grades observed in the drill holes. HSC also validated the block model statistically using a variety of histograms and summary statistics. Block model validation confirmed the modelling strategy as acceptable with no significant issues. No production has taken place, so no reconciliation data is available.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	The tonnages are estimated on a dry basis.Moisture was not determined
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	 Rimfire advised HSC that a scandium cut-off grade of 100ppm is to be used for reporting the Mineral Resources. This is consistent with the cut-off grade used for its Murga and Melrose projects that are in the vicinity of Currajong (see Rimfire's ASX Announcement dated 5 September 2024). USGS pricing data for the period 2019 to 2023 ranges from a low value of US\$2,100 / kilo to a high value of US\$3,900 / kilo for Scandium Oxide. The cut-off grade is based on a Rimfire review of pricing used by Sunrise, Scandium International and Platina Resources (all projects in the vicinity of Rimfire's Fifield Project) in their respective financial models and compared to latest pricing data the following is noted:
		 Sunrise [Syerston Deposit] used a US\$1,500 / kilo Scandium Oxide price in 2016 for a 300ppm cutoff.
		 Scandium International [Nyngan Deposit] used a US\$2,000 / kilo Scandium Oxide price in 2016 for 100ppm cutoff.
		 Platina Resources [Owendale / Burra Deposit] used a US\$1,550 / kilo Scandium Oxide price in 2018 for a 300ppm cutoff.
		 All three studies were undertaken assuming a high-pressure acid leaching (HPAL) processing route which is also being considered by Rimfire along with atmospheric pressure acid leaching (AL). In addition Rimfire is considering other commercial arrangements

Criteria	JORC Code explanation	Commentary
		such as offtakes/toll treating.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 It is assumed that the deposit will be mined by conventional shallow open pit methods. A simple truck and shovel operation is envisaged with possibly free digging of the overburden and mineralised laterite without the need for explosives. The model block size (20m by 20m by 2m) is the effective minimum mining dimension for this estimate. Any internal dilution has been factored in with the modelling and as such is appropriate to the block size. Groundwater impacts can be managed.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 Perth specialist metallurgical services group, Independent Metallurgical Operations Pty Ltd (IMO), carried out sighter acid-leach test work focused on maximising scandium recovery at atmospheric pressures from the Melrose laterite-hosted mineralisation. As announced by Rimfire to the ASX (13 May 2024), the last round of test work demonstrated recoveries to solution of up to 90.1% Scandium. Currajong displays geological similarities with Melrose and whilst further metallurgical work is required, it is reasonable to assume that metallurgical results for Melrose are likely to be broadly applicable to Currajong. Rimfire considers that the primary metallurgical method for the Currajong mineralisation would be via an acid leaching process (at either atmospheric pressure or high pressure) followed by a solvent extraction resin exchange process to recover Scandium/Scandium Oxide from solution. Rimfire are also considering the option of toll treating the mined material at nearby other potential operations. This will preclude the need for a stand-alone processing plant and is reflected in the cut-off grade used for the Mineral Resources. No metallurgical test work has been undertaken on the Currajong mineralisation to date.
Environmen ta I factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, 	 It is assumed that screening would be done using wet saprolite after appropriate size reduction. Dust generated during size reduction and screening would be minimal. It is assumed that any acid leaching would be in sealed tanks and that spent acid would be neutralised with an alkaline substance such as limestone.

Criteria	JORC Code explanation	Coi	mmentary				
	may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	•	watercourses and Land use is main Despite the laterit	d seasonal water by agriculture with the being oxidised te in the 1-5% r ntainment progra holes no signific	flows. n both s materia ange ar amme. cant wat	tock and il the XR nd will lil	D analysis identified kely require an acid encountered.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	•	supplied to HSC samples of drill of fractured or brok given geologicals	core. 10 samples sen core were c similarities between	of meas of low- liscarde en Melr	urement density d. Melro ose and	rose prospect, was as for 105 selected values described as used, Currajong, although currajong material at
			Rock Type	No of Samples	Min	Max	Ave Density t/m ³
			Clay	3	1.66	2.22	2.09
			Laterite	26	1.86	2.47	2.15
			Pyroxenite	45	1.58	2.79	2.43
			Oxidised <30m	23	1.58	2.79	2.21
			Fresh >30m	22	2.41	2.79	2.66
			Saprolite	14	1.82	2.32	2.1
			Serpentinite	6	2.18	2.4	2.26
			Ultramafic	11	1.93	2.37	2.09
			Total	105			
		•	of 17 samples we of 2.15t/m³. Density was mea (Archimedes Prir A default density Currajong Minera	ere for ultramafic/ sured using the aciple) on air-drie of 2.15/m³ was al Resources.	serpent weight i d core s used fo	inite with n air-wei samples or reporti	sity 2.15t/m³. A total an average density ght in water method sealed in clingfilm. Ing tonnages for the nable based on the

Criteria	JORC Code explanation	Commentary		
		Competent Person's experience with similar types of deposit, the chemical nature of the oxidised material and the supplied sample measurements.		
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 Mineral Resources have been classified on sample spacing, grade continuity, sample recoveries, QAQC outcomes and geological understanding. Other relevant factors have been taken into consideration eg drilling methods, density data. Search passes 1, 2, 3 & 4 are classed as Inferred. The classification appropriately reflects the Competent Person's view of the deposit. 		
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	 No audits of the Mineral Resource estimates were completed. HSC completed an informal internal review of the Mineral Resource estimates with no issues identified. 		
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 The relative accuracy and confidence level in the Mineral Resource estimates are considered to be in line with the generally accepted accuracy and confidence of the nominated Mineral Resource categories. This has been determined on a qualitative, rather than quantitative, basis, and is based on the Competent Person's experience with similar deposits. The geological nature and interpretation of the deposit, the grade interpolation technique, the composite/block grade comparison (block model validation) and the low coefficients of variation lend themselves to a reasonable level of confidence in the resource estimates. The Mineral Resource estimates are considered to be reasonably accurate globally, but there is some uncertainty in the local estimates due to the current drillhole spacing, which may not pick up some small scale clustering of grade and/or localised domains of different grade or material type. No mining of the deposit has taken place, so no production data is available for comparison. 		