

30th March 2012

Company Announcement Office Australian Securities Exchange rimfire pacific mining nl a.c.n. 006 911 744

Exchange Tower Suite 411 530 Little Collins Street Melbourne Victoria Australia, 3000

Telephone 61 3 9620 5866 Facsimile 61 3 9620 5822 e-mail: <u>rimfire@rimfire.com.au</u> website: <u>www.rimfire.com.au</u>

<u>Coherent Gold Geochemistry at Yoes Lookout Confirmed – Fifield NSW</u> - additional soil sampling and shallow auger drilling provide further advance

Additional exploration at Yoes Lookout prospect (EA 11), located 5km due east of the Sorpresa Gold project area at Fifield NSW provides further advancement in the prospective nature of this area for gold mineralisation.

Infill soil geochemistry¹ and preliminary auger drill chemistry demonstrate the likely in situ character of the Gold anomalism seen to date at Yoes Lookout.

Exploration update for Yoes Lookout - Gold Geochemistry

✤ Additional Au in soil assay results confirm continuity in the geochemistry on tighter sample spacing

- Higher values range from approx. 20ppb to plus 100ppb, with a new peak value of 270ppb
- At a 20ppb contour the Au anomaly is 450m length x 200m width and open in many directions
- Soil sample lines are now spaced 50m apart and samples are at intervals of 25m along lines
- Tighter Au contouring provides a lens like character to the results with centres of > 100ppb Au

Deeper drilling is now planned due to commence shortly

- Traverse lines are now being finalised for "first pass scout drilling" to 40~100m depths
- Permits have been issued for commencement of this drilling at any time
- Ground magnetic surveying has identified drill targets spatially associated with the Au in soil anomaly
- **286 auger drilling holes** have been completed within the central corridor of the Au in Soil anomaly
 - 12 auger lines at with 5m hole spacings were drilled into shallow bedrock (<2.5m)
 - The underlying rock is hard to penetrate with the auger and is considered to have been "undersampled"
 - Auger Au assays provide cosistency with the overlying Au in soil anomaly, with a high value of 1.62g/t Au
 - The auger traverses were conducted "prior" to soil geochemistry results being seen and have in many cases, not sampled the best soil geochemistry

The conclusion - the underlying rock gives rise to the Au in soil anomalism at Yoes Lookout

Yoes Lookout Rockchip (1.54g/t Au) revealing magnetite veining and gossan (sulphide) > 15%

The Head of Exploration, Colin Plumridge, commented:

"The growing quality of the Yoes Lookout gold in soil anomaly continues to impress. The latest infill results confirm we have a greenfields coherent Au anomaly in the soil that is now well established, considerable in size and open in many directions.

There is an underlying geology that we have now seen that **contains gossanous magnetite-veined rock** as evidenced in shallow bedrock auger² drilling (<2.5m) and float rock, which makes a sensible connection to the Au seen in the soils. **The level of gold anomalism at plus 20ppb/t Au is significant**, particularly when we see this area is located within the

¹ Appendix 1 – Yoes Lookout Au in Soil updated results in plan view and contours

² Appendix 2 – Table of Auger Drilling in Bedrock results

important mineralized Lachlan-Cadia corridor, a world class Au producing geological feature.

Completed ground magnetics and surface based geological appraisal have identified preliminary areas to be targeted with reconnaissance drilling (40~80m) to follow within the next quarter.

Yoes Lookout geology is different from the Sorpresa Au area to the west. The rocks at Yoes Lookout are part of the porphyry gold-copper style of geology that includes North Parkes ³. We are developing a larger scale geological model for Fifield incorporating these new observations gained at Yoes Lookout."

Yoes Lookout heading North East along the Au in Soil Anomaly. The underlying Gossanous Rocks are also Au Anomalous.

The Executive Chairman, John Kaminsky explained:

"It was extremely pleasing to see the new infill soil results establish the cohesive nature of the Au anomaly at Yoes Lookout and this was backed up with solid confirmation in auger drilling work to date, **demonstrating a gold position in the underlying rock.**

We have an active drill rig on call at Fifield for deeper assessment at Yoes Lookout and will shortly perform some **"scout drilling"** suitably positioned on the Au geochemistry and the co-incident magnetic features. We saw previously at Sorpresa how quickly the Au soil geochemistry was soon translated to important discovery outcomes in deeper drilling. We are clearly looking to make the same sort of transition at Yoes Lookout.

It should also be noted that exploration work continues at Sorpresa gold project, where weather conditions have now improved. The program underway includes some "scout drilling" looking for Black Silica and Au mineralization SW of Trench31 area at Sorpresa. In March, approximately 600 metres of "scout drilling" has already been completed (45m~70m depths).

Further expansion of the drill programs at Sorpresa will occur in the next quarter, with **new drill permits now issued**, allowing intense drilling of the current known Au mineralized areas, heading to resource definitions.

In addition, we are **examining the 3D pole-dipole IP chargeability model** now developed at Sorpresa. Preliminary indications show that there is a **definite deeper geological significance underlying the Sorpresa Au mineralization** seen in drilling during 2011. This needs be investigated with a drilling program design focused at 150~300m target depths."

Yoes Lookout discussion Thread

The Company provides a thread of the Yoes Lookout Gold Mineralisation area ASX Announcements as follows:

- 1. January 31st 2012 (Quarterly Exploration Activities December 2011)
- 2. February 21st 2012 (Significant Gold Anomalism Observed at Yoes Lookout Fifield NSW)

³ North Parkes mine is operated by Riotinto and located approx. 50km SE of Yoes Lookout – Refer Appendix 4

Notes on the Unique Geological Position of the Fifield Project Area

The district wide exploration work continues to find mineralisation zoning of various styles at Fifield. The eastern areas, which includes Yoes Lookout have underlying Silurian-Devonian aged rocks which have been eroded to expose the underlying Upper Ordovician porphyry copper-gold style rocks.

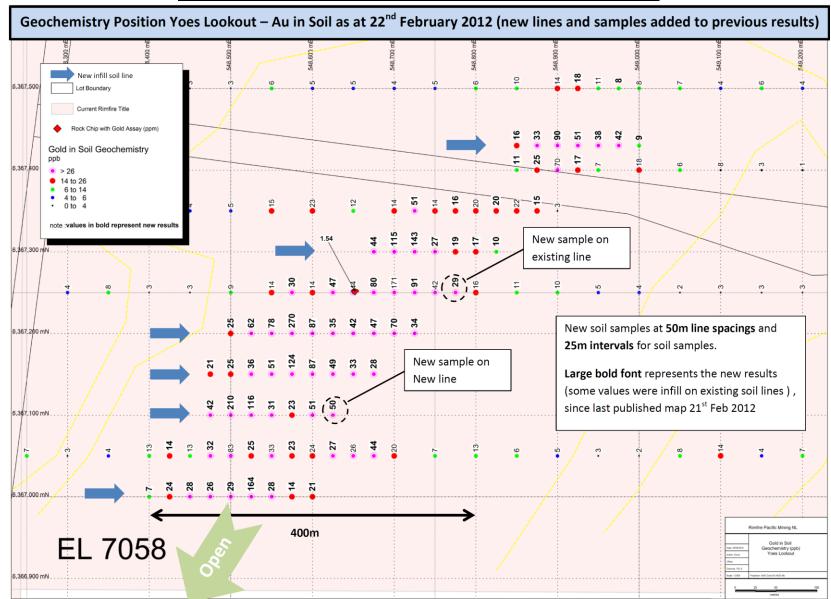
The western gold areas at Fifield have Girilambone age rocks below the Silurian-Devonian rocks. Accordingly, it is postulated that somewhere below the Sorpresa Gold mineralised area, there is a massive fault contact between the Girilambone rocks and the Upper Ordovician porphyry copper-gold style rocks.

This important geological contact below Sorpresa is also cut by the Lachlan Lineament structure and is intruded by many and varied intrusives. It is also the site of a deep rift with highly carbonaceous rocks being deposited simultaneously with rhyodacite and basic volcanics.

A conceptual geological model is being developed to reflect this interpretation.

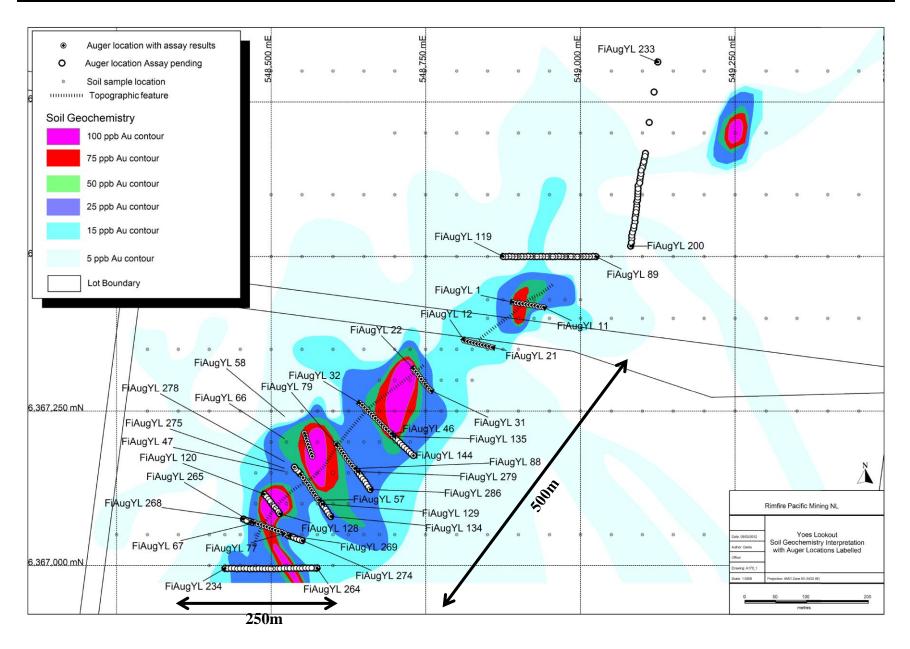
The wider geological mapping and interpretation of the new Yoes Lookout area has provided an encouraging context to the Au anomalism. The geology at the Sorpresa Gold Project area differs to that of the Yoes Lookout area, where the Upper Ordovician volcanics appear to be the dominant underlying host rock style. The setting is closer to the porphyry copper-gold style geology that includes North Parkes.

Magnetite veining in altered andesite has been identified and a shear zone appears to be present, along the strike of the main corridor of the Au in soil anomaly at Yoes Lookout. A negative topographic expression of the main gold zone is evident.


The Fifield area continues to develop its gold credentials. The turning point was the RC drilling that confirmed discovery of disseminated gold at Sorpresa in 2011, elevating the importance of the gold geochemistry and trench work done in 2010 at that location.

Disseminated gold deposits appear evidenced to occur in this dynamic geological setting within the Fifield district, and this has gone largely unrecognised by all other explorers prior to Rimfire's Sorpresa gold discovery.

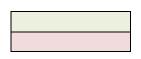
JOHN KAMINSKY Executive Chairman


The information in the report to which this statement is attached that relates to Exploration Results is compiled by Mr Colin Plumridge, who is a Member of The Australian Institute of Mining and Metallurgy, with over 40 years experience in the mineral exploration and mining industry. Mr Plumridge is employed by Plumridge & Associates Pty. Ltd. and is a consulting geologist to the Company. He has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity, which is being undertaken to qualify as Competent Persons as defined in the 2004 edition of the "Australian Code for Reporting of Mineral Resources and Ore reserves". Mr Plumridge consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

<u>Appendix 1</u> <u>Yoes Lookout Gold in Soil Anomaly – Plan View of Values in ppb Au⁴</u>

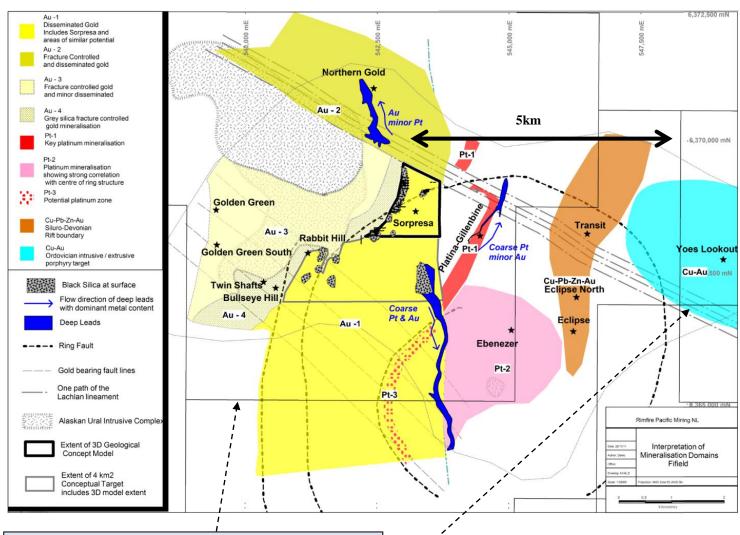
⁴ Au assays in parts per billion (ppb) using fire assay method Au-TL44, 50g charge size, ICP-MS finish, detection limit 1ppb Au. Soil samples were screened to 5mm, so coarse rock fragments were not well sampled

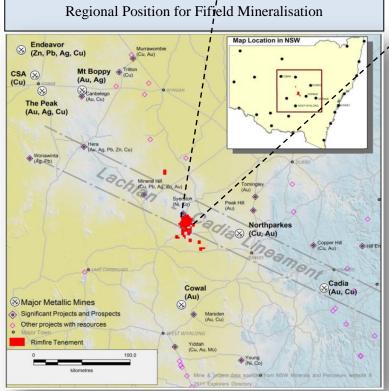
<u>Appendix 1 (cont.)</u> Contours of Yoes Lookout Gold in Soil Anomaly – Plan View of Values in ppb Au (also showing auger drill locations - FiAugYL)



<u>Appendix 2</u> <u>Yoes Lookout Gold Assays in ppm Au - Shallow Bedrock Auger Traverses</u>

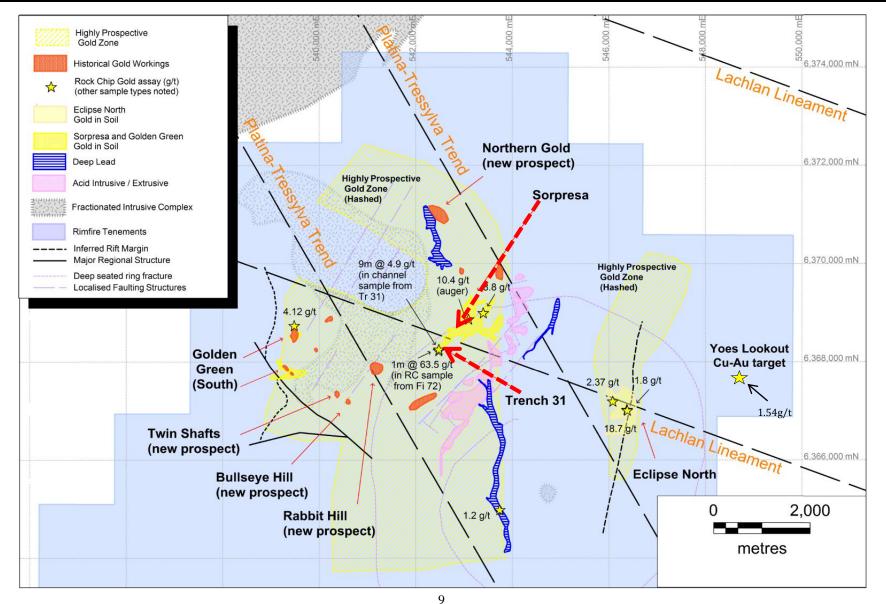
SAMPLE	Au-AA22	Au-AA26	SAMPLE	Au-AA22	SAMPLE	Au-AA22
DESCRIPTION	Au	Au	DESCRIPTION	Au	DESCRIPTION	Au
(Number:Depth			(Number:Depth		(Number:Depth	
sampled m)	ppm	ppm	sampled m)	ppm	sampled m)	ppm
FiAugYL 1:1.6-2.1	0.418		FiAugYL 89: 1.3-2.5	0.007	FiAugYL 232: 1.6-2	0.004
FiAugYL 2:0.4-0.7	0.069		FiAugYL 90: 1.3-2	0.003	FiAugYL 233: 2-2.2	0.006
FiAugYL 3:0.5-0.7	0.08		FiAugYL 91: 1.3-2	0.009	FiAugYL 234: 0.8-2	0.008
FiAugYL 4:0.5-1.1	0.164		FiAugYL 92: 1.3-2	0.013	FiAugYL 235: 0.5-1.5	0.013
FiAugYL 5:0.5-0.9	0.364		FiAugYL 93: 1-2	0.01	FiAugYL 236: 0.8-1.5	0.011
FiAugYL 6:0.3-0.8	>1.00	1.62	FiAugYL 94: 1-1.8	0.005	FiAugYL 237: 0.5-1.5	0.021
FiAugYL 7:1-1.7	0.063		FiAugYL 95: 1.2-2	0.007	FiAugYL 238: 0.9-2	0.022
FiAugYL 8:1-2.5	0.098		FiAugYL 96: 1.2-2	0.01	FiAugYL 239: 0.9-1.6	0.011
FiAugYL 9:1.5-2.5	0.061		FiAugYL 97: 1.2-2	0.024	FiAugYL 240: 1-2	0.023
FiAugYL 10:1.5-2.1	0.03		FiAugYL 98: 1.2-2	0.026	FiAugYL 241: 0.8-1.5	0.011
FiAugYL 11:1.5-2.2	0.039		FiAugYL 99: 1.2-2	0.016	FiAugYL 242: 0.9-1.3	0.037
FiAugYL 12:1.4-1.7	0.008		FiAugYL 100: 1.4-2.5	0.015	FiAugYL 243: 1-2	0.037
FiAugYL 13:0.4-0.4	0.007		FiAugYL 101: 1.6-2.5	0.013	FiAugYL 244: 0.9-1.3	0.037
FiAugYL 14:1-1.6	0.026		FiAugYL 102: 1.4-2.5	0.032	FiAugYL 245: 1-2	0.045
FiAugYL 15:0.8-1.1	0.011		FiAugYL 103: 1.3-2	0.027	FiAugYL 246: 0.8-1.5	0.019
FiAugYL 16:0.6-1.1	0.025		FiAugYL 104: 1.4-2.5	0.04	FiAugYL 247: 0.7-1.5	0.03
FiAugYL 17:1.5-2.5	0.054		FiAugYL 105: 1.3-2.1	0.038	FiAugYL 248: 1-2	0.052
FiAugYL 18:1.1-1.4	0.124		FiAugYL 106: 1.3-2	0.012	FiAugYL 249: 0.9-1.3	0.009
FiAugYL 19:0.5-0.8	0.06		FiAugYL 107: 1.3-2	0.022	FiAugYL 250: 0.9-1.2	0.015
FiAugYL 20:0.7-1.1	0.032		FiAugYL 108: 1.3-2	0.01	FiAugYL 251: 0.9-1.1	0.012
FiAugYL 21:1.5-2	0.005		FiAugYL 109: 1.3-2	0.015	FiAugYL 252: 0.9-1.2	0.16
FiAugYL 22:1.5-2.2	0.045		FiAugYL 110: 1.2-2	0.05	FiAugYL 253: 0.9-1.1	0.01
FiAugYL 23:1.2-2	0.023		FiAugYL 111: 0.6-0.8	0.027	FiAugYL 254: 0.5-0.6	0.035
FiAugYL 24:1-2	0.023		FiAugYL 112: 1.3-2.1	0.016	FiAugYL 255: 0.6-1.1	0.047
FiAugYL 25:1.4-2.5	0.022		FiAugYL 113: 1.5-2.2	0.028	FiAugYL 256: 0.8-1.6	0.034
FiAugYL 26:1.4-1.8	0.062		FiAugYL 114: 1.2-2	0.034	FiAugYL 257: 2-3	0.053
FiAugYL 27:0.9-1.2	0.036		FiAugYL 115: 1.1-2	0.019	FiAugYL 258: 0.8-0.9	0.012
FiAugYL 28:0.8-1.1	0.019		FiAugYL 116: 1.3-2	0.112	FiAugYL 259: 1-1.3	0.09
FiAugYL 29:0.5-0.7	0.029		FiAugYL 117: 1.3-2	0.063	FiAugYL 260: 0.8-1	0.016
FiAugYL 30:0.8-1.5	0.199		FiAugYL 118: 1.2-1.4	0.033	FiAugYL 261: 0.9-1.2	0.015
FiAugYL 31:0.4-0.5	0.077		FiAugYL 119: 1.1-2	0.032	FiAugYL 262: 0.7-1.6	0.05
FiAugYL 32:0.4-0.7	0.053		FiAugYL 120: 1-1.4	0.039	FiAugYL 263: 1-2	0.164
FiAugYL 33:0.6-1.2	0.038		FiAugYL 121: 0.9-1.5	0.012	FiAugYL 264: 1-2	0.051
FiAugYL 34:1-1.5	0.091		FiAugYL 122: 0.9-2	0.025	FiAugYL 265: 0.9-2	0.118
FiAugYL 35:1.2-2.5	0.044		FiAugYL 123: 0.7-2	0.11	FiAugYL 266: 1-2	0.034
FiAugYL 36:0.5-1	0.042		FiAugYL 124: 1-2	0.235	FiAugYL 267: 0.8-1.4	0.022
FiAugYL 37:1.1-2.5	0.055		FiAugYL 125: 1-2	0.03	FiAugYL 268: 0.9-2	0.012
FiAugYL 38:1.1-1.9	0.158		FiAugYL 126: 0.9-1.7	0.155	FiAugYL 269: 0.8-1	0.02
FiAugYL 39:0.6-1.1	0.109		FiAugYL 127: 1.2-2	0.151	FiAugYL 270: 0.8-0.9	0.132
FiAugYL 40:0.7-1.2	0.074		FiAugYL 128: 0.9-1.7	0.169	FiAugYL 271: 0.7-0.8	0.168
FiAugYL 41:0.5-0.8	0.025		FiAugYL 129: 0.8-1	0.2	FiAugYL 272: 1-1.4	0.039
FiAugYL 42:0.6-1	0.018		FiAugYL 130: 1-1.7	0.052	FiAugYL 273: 0.5-0.6	0.088
FiAugYL 43:0.6-1.2	0.031		FiAugYL 131: 0.9-1.2	0.055	FiAugYL 274: 0.5-1.4	0.445
FiAugYL 44:1.4-2.5	0.375		FiAugYL 131: 0.9-1.2	0.033	FiAugYL 275: 0.4-0.5	0.443
117461 L 44.1.4-2.J	0.375		6	0.054	17451 213. 0.4-0.3	0.011


FiAugYL 45:0.4-1.1	0.065	FiAugYL 133: 1.8-2.2	0.037	FiAugYL 276: 1-2	0.083
FiAugYL 46:0.5-0.8	0.052	FiAugYL 134: 0.8-1.2	0.015	FiAugYL 277: 1-2	0.048
FiAugYL 47:1.1-2.5	0.026	FiAugYL 135: 0.9-2	0.121	FiAugYL 278: 1-2	0.112
FiAugYL 48:1.1-1.7	0.009	FiAugYL 136: 2-2.5	0.097	FiAugYL 279: 1-2	0.064
FiAugYL 49:0.4-0.7	0.08	FiAugYL 137: 1-2	0.098	FiAugYL 280: 0.8-1.5	0.022
FiAugYL 50:0.4-0.7	0.03	FiAugYL 138: 1.3-2	0.045	FiAugYL 281: 1-1.5	0.023
FiAugYL 51:1-2.5	0.007	FiAugYL 139: 1-2	0.121	FiAugYL 282: 1-2	0.024
FiAugYL 52:1.3-1.7	0.01	FiAugYL 140: 1.3-2	0.063	FiAugYL 283: 0.6-1.5	0.02
FiAugYL 53:1.2-2.5	0.057	FiAugYL 141: 1.2-2	0.03	FiAugYL 284: 1-2	0.026
FiAugYL 54:1-2.5	0.097	FiAugYL 142: 1.2-2	0.023	FiAugYL 285: 1-2	0.016
FiAugYL 55:1.4-2.5	0.04	FiAugYL 143: 1.2-2	0.02	FiAugYL 286: 1-2	0.022
FiAugYL 56:1.3-1.9	0.012	FiAugYL 144: 1.1-2	0.029		
FiAugYL 57:0.7-1.3	0.086	FiAugYL 200: 1.1-2	0.008		
FiAugYL 58:1.2-1.9	0.029	FiAugYL 201: 1-2	0.012		
FiAugYL 59:1.2-2	0.029	FiAugYL 202: 0.9-2	0.006		
FiAugYL 60:1.2-2	0.101	FiAugYL 203: 1-2	0.007		
FiAugYL 61:0.8-1.2	0.13	FiAugYL 204: 1.1-2	0.007		
FiAugYL 62:0.8-1.4	0.054	FiAugYL 205: 1.1-2	0.008		
FiAugYL 63:0-0.1	0.007	FiAugYL 206: 1.1-2	0.005		
FiAugYL 64:1-1.5	0.029	FiAugYL 207: 1-2	0.005		
FiAugYL 65:1.3-1.9	0.193	FiAugYL 208: 0.9-2	0.005		
FiAugYL 66:1.1-1.4	0.185	FiAugYL 209: 0.9-2	0.004		
FiAugYL 67:1.2-2.5	0.191	FiAugYL 210: 1.1-2	0.005		
FiAugYL 68:1.2-1.9	0.067	FiAugYL 211: 1.1-2	0.004		
FiAugYL 69:1.2-1.9	0.229	FiAugYL 212: 1.1-2	0.012		
FiAugYL 70:1.6-2.5	0.08	FiAugYL 213: 0.9-2	0.016		
FiAugYL 71:1.2-2	0.064	FiAugYL 214: 1.3-2	0.013		
FiAugYL 72:1-2	0.102	FiAugYL 215: 1.1-2	0.006		
FiAugYL 73:1-2	0.198	FiAugYL 216: 1.3-2	0.005		
FiAugYL 74:0.9-1.5	0.032	FiAugYL 217: 1.4-2	0.005		
FiAugYL 75:0.8-1.3	0.02	FiAugYL 218: 1.1-2	0.004		
FiAugYL 76:0.8-1.6	0.035	FiAugYL 219: 1-2	0.006		
FiAugYL 77:1-1.6	0.027	FiAugYL 220: 0.9-2	0.006		
FiAugYL 78:0.8-1.2	0.026	FiAugYL 221: 0.9-2	0.015		
FiAugYL 79:0.8-1.2	0.017	FiAugYL 222: 1-2	0.006		
FiAugYL 80:07-1.1	0.015	FiAugYL 223: 1.4-2	0.007		
FiAugYL 81:0.8-1.8	0.036	FiAugYL 224: 1.2-2	0.007		
FiAugYL 82:0.4-0.8	0.05	FiAugYL 225: 1.1-2	0.006		
FiAugYL 83:1.1-2	0.054	FiAugYL 226: 1.1-2	0.009		
FiAugYL 84:0.2-0.8	0.036	FiAugYL 227: 1.1-2	0.008		
FiAugYL 85:0.8-1.5	0.065	FiAugYL 228: 1.2-2	0.01		
FiAugYL 86:0.8-1.8	0.032	FiAugYL 229: 1.3-2	0.008		
FiAugYL 87:0.8-1.8	0.027	FiAugYL 230: 1.1-2	0.007		
FiAugYL 88:1.1-2	0.101	FiAugYL 231: 1.5-2	0.006		


Au Values above 0.02 g/t (20ppb) coloured Au Values above 0.05 g/t (50ppb) coloured

Assay Method ALS Laboratories Au Fire Assay AA22 <1.00g/t and AA26 >1.00g/t ; 50g sample charge

<u>Appendix 3</u> <u>Project Locations at Fifield NSW within Lachlan-Cadia Lineament</u> and Metal Zoning Interpretations at Rimfire Fifield Project Areas



Rimfire tenements shown in red (at left) within the Lachlan-Cadia Lineament.

Metal zoning interpreted (above) within key Rimfire Tenements at Fifield, making this an exciting location for discoveries.

Note the Black Silica areas (above) mapped as part of the Au receptive horizon inferred

<u>APPENDIX 4</u> EL5534 The Sorpresa Area Anomalous Gold Zone – within the wider Fifield Gold Observations "Some" New Prospects Highlighted

