RIMFIRE PACIFIC MINING LTD

ASX: RIM

"Critical Minerals Explorer"

MANAGEMENT

David Hutton MANAGING DIRECTOR / CEO

Dr Peter Crowhurst EXPLORATION MANAGER

Michael Love GEOLOGICAL CONSULTANT

Paul Wright GEOLOGICAL CONSULTANT

Greg Keane CHIEF FINANCIAL OFFICER and ALTERNATE DIRECTOR for lan McCubbing

BOARD

lan McCubbing CHAIRMAN

Andrew Knox NON-EXECUTIVE DIRECTOR

Stefan Ross COMPANY SECRETARY

OFFICE

Suite 142, Level 1 1 Queens Road MELBOURNE VIC 3004

CONTACT DETAILS

David Hutton + 61 417 974 843

Greg Keane + 61 497 805 918

rimfire@rimfire.com.au www.rimfire.com.au

ABN: 59 006 911 744

6 December 2023

New scandium search space at Melrose

Highlights

- A geochemical review of the Melrose Prospect at the Avondale JV has identified broad zones of anomalous scandium (50 - 92ppm Sc) in underlying serpentinised ultramafic (pyroxenite)
- The scandium anomalous pyroxenite is additional to high-grade laterite-hosted nickel cobalt scandium mineralisation and potentially represents a new scandium search space
- The pyroxenite remains largely untested with majority of exploration to date focused on laterite-hosted mineralisation
- Drilling to underpin maiden 2012 JORC Code compliant Mineral Resource Estimate planned for 1st Qtr. 2024
- Results of metallurgical leaching test work due by end January
 2024 with 5 out of 8 tests completed to date

Rimfire Pacific Mining (**ASX: RIM**, "**Rimfire**" or "**the Company**") advises that a geochemical review of the Melrose Nickel Cobalt Scandium prospect has identified a new scandium search space (target) beneath existing laterite - hosted mineralisation within serpentinised pyroxenite host rocks.

Commenting on the announcement, Rimfire's Managing Director Mr David Hutton said: *"Recognition of broad zones of anomalous scandium within the underlying basement pyroxenite is a significant development for the Melrose prospect.*

To date we have been focussed on evaluating the high-grade laterite – hosted mineralisation and these results highlight what could be a whole new additional scandium search space at Melrose that is largely untested.

With metallurgical test work nearing completion and preparations being made for resource drilling, Rimfire looks forward to providing further market updates as new information comes to hand".

Melrose lies within the Company's Avondale Project, in Joint Venture with Golden Plains Resources (GPR) and is located 70 kilometres northwest of Parkes within the highly prospective Lachlan Orogen of central New South Wales (*Figure 1*).

Melrose scandium target details

Nickel, cobalt, and scandium (Ni Co Sc) mineralisation at Melrose is present within a near surface flat – lying manganese and iron rich laterite horizon that overlies an east-dipping sequence of ultramafic and mafic intrusive rocks (microdiorite, gabbro, pyroxenite, wehrlite, dunite) bounded to the east against a granite and volcaniclastic sediments to the west.

The ultramafic rocks are heavily altered with serpentinite and magnetite is commonly present throughout.

Previous drilling by Rimfire has returned multiple strongly anomalous drill intercepts from the laterite horizon, e.g.;

- 21m @ 0.11% Ni, 0.07% Co, and 529ppm Sc, from 3 metres in FI2397 including 9m @ 0.17% Ni, 0.15% Co and 688ppm Sc from 14 metres,
- 2.3m @ 0.15% Ni, 0.08% Co and 461ppm Sc from 3 metres and 5.0m @ 0.68% Ni, 0.07% Co and 302ppm Sc from 16 metres in FI2398,
- 4.9m @ 0.36% Ni, 0.11% Co and 349ppm Sc from 5 metres, and 4.3m @ 0.42% Ni, 0.09% Co and 296ppm Sc from 10.1 metres in FI2399, and
- 10.0m @ 0.14% Ni, 0.10% Co and 456ppm Sc from 1 metre in FI2400 including 5m @ 0.17% Ni, 0.17% Co and 568ppm Sc from 5 metres.

The laterite – hosted mineralisation is present within a north northeast - south southwest trending zone that has been drilled over 900 metres strike length with widths ranging from 400 metres in the core of the magnetic complex to 50 metres in the northeast (as defined by a 100ppm Sc lower cut-off grade). Thickness ranges up to 16 metres in the core of the magnetic complex with mineralisation remaining open to the west (*Figures* 2 - 6).

Significantly, the thickest zones and highest-grade mineralisation are present over the serpentinised ultramafic intrusive rock types, with the highest scandium grades spatially associated over the pyroxenite.

To date Rimfire has been focussed on evaluating the laterite – hosted mineralisation, however a review of bedrock geochemistry has demonstrated that anomalous scandium (50 - 92ppm Sc) appears to be concentrated in pyroxenite rocks beneath the laterite.

The prospectivity of the underlying basement rocks is poorly understood with only 4 wide spaced diamond holes having been drilled on one section into the fresh basement rocks at Melrose (*See Rimfire ASX Announcement dated 20 October 2022 and Table 1*).

As shown on *Figure* 7, two holes (FI2399 and FI2400) intersected broad continuous downhole widths of anomalous scandium – FI2399; 81 to 204 metres with an average value of 66ppm Sc and a maximum one metre value of 80ppm Sc (ICP data), and FI2400; 15 to 97 metres with an average value of 66ppm Sc and a maximum one metre value of 92ppm Sc (ICP data). [Note that each hole was sampled every second metre beneath the laterite and individual one metre scandium values for both the XRF and ICP analytical methods are shown in *Table 2*).

While the significance of the pyroxenite – associated scandium is unknown at this time, given the size of the Melrose prospect, the broad widths of scandium intersected to date coupled with the lack of drilling beneath the laterite, **Rimfire believes that the underlying pyroxenite represents** a new scandium search space or target in addition to the high-grade laterite-hosted mineralisation at Melrose.

As a next step Rimfire is proposing to undertake high resolution mineralogical studies of the pyroxenite to better understand the geological context of the scandium.

Resource drilling

As previously announced (*see Rimfire ASX Announcement dated 26 June* 2023), subject to a favorable outcome from metallurgical test work Rimfire will undertake a detailed drill out of the Melrose prospect with a view to estimating a maiden Mineral Resource Estimate (MRE) in accordance with the 2012 JORC Code. These plans remain on track with drilling scheduled for the 1st Quarter of 2024.

Metallurgical test work

Perth specialist metallurgical services group - Independent Metallurgical Operations Pty Ltd (IMO) is currently developing a conceptual processing flowsheet with the aim of optimising recoveries (at atmospheric pressures) and production of a nickel – cobalt – scandium product from high-grade mineralised laterite – hosted material from Melrose.

To underpin the studies, a bulk composite sample (260 kg) of high-grade nickel cobalt scandium mineralisation from Melrose (PQ quarter diamond drill core) was previously dispatched to IMO.

As previously announced, a representative sub-sample of the bulk composite sample was pulverised and analysed with assaying of various size fractions returning head assay grades of 0.33% nickel, 0.12% cobalt, and 380ppm scandium (*see Rimfire ASX Announcement dated 26 June 2023*).

IMO have now completed 5 leaching tests with 3 additional tests to be undertaken to complete the studies. All the tests are being conducted at atmospheric pressures and are investigating the effects of temperature, grind size, pH, reagent mix and residence time on the recovery of nickel, cobalt, and scandium.

The remaining 3 tests will be completed in the coming weeks with a final report expected by the end of January 2024.

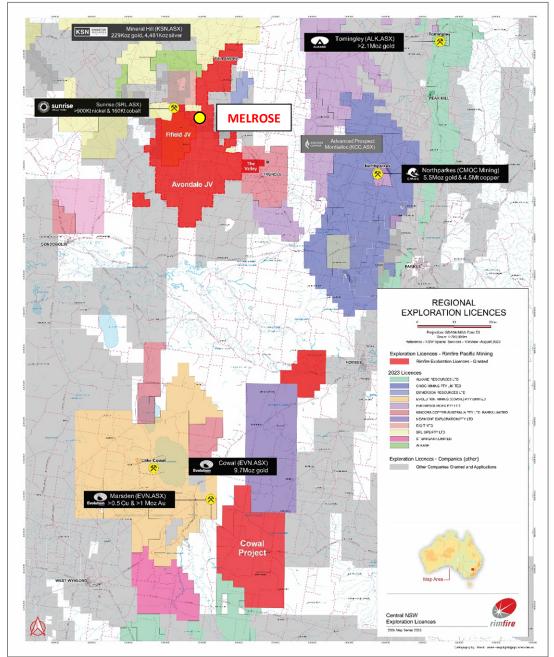


Figure 1: Rimfire Project Locations and key prospects.

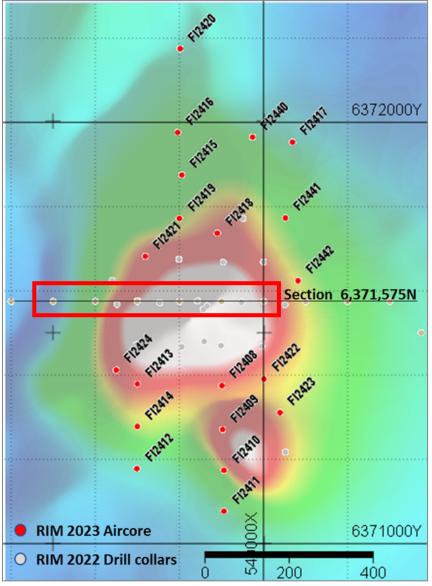


Figure 2: Melrose drill collar plan (TMI image) showing location of the 6,371,575N section (*shown in Figure* 7) and Rimfire's drill collars.

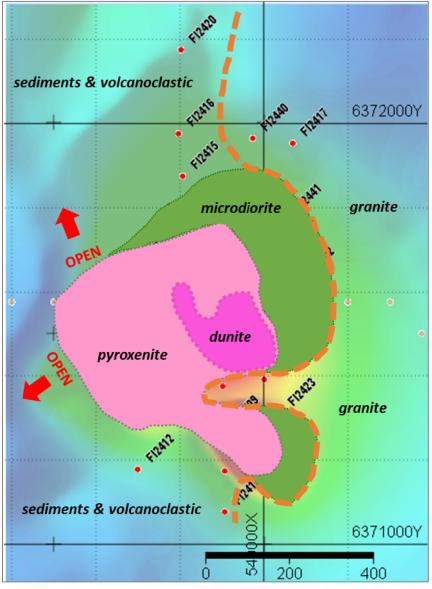


Figure 3: Melrose prospect – interpreted (bottom of hole) geology.

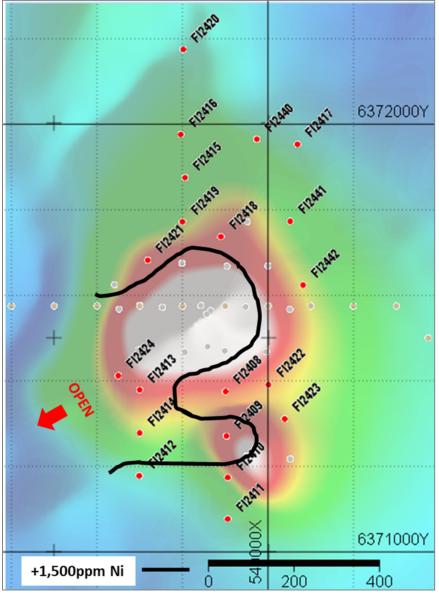


Figure 4: Melrose prospect – nickel in laterite zone (as shown by +1,500ppm Ni contour) which remains open to the southwest.

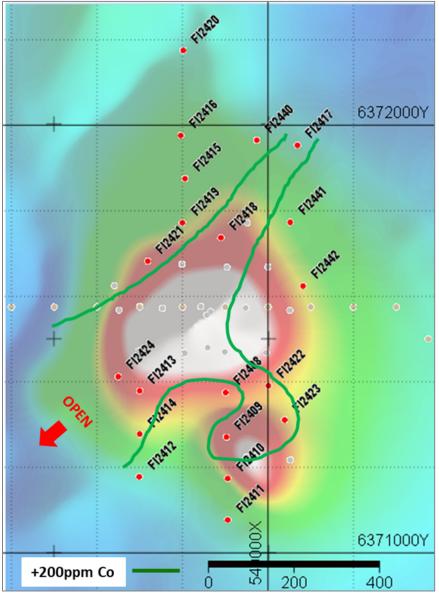


Figure 5: Melrose prospect – cobalt in laterite zone (as shown by +200ppm Co contour) which remains open to the southwest.

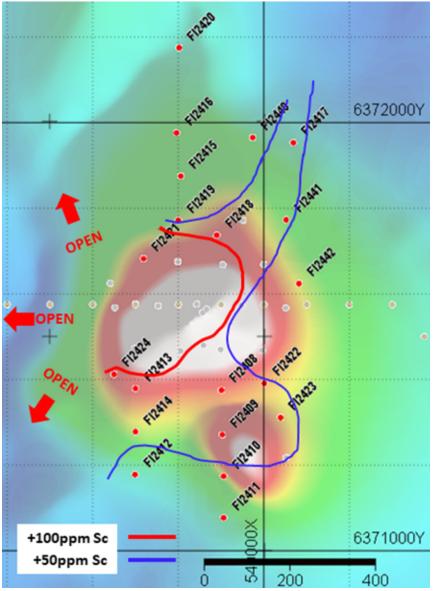


Figure 6: Melrose prospect – scandium in laterite zone (as defined by +50ppm and +100ppm Sc contours) which remains open to the west.

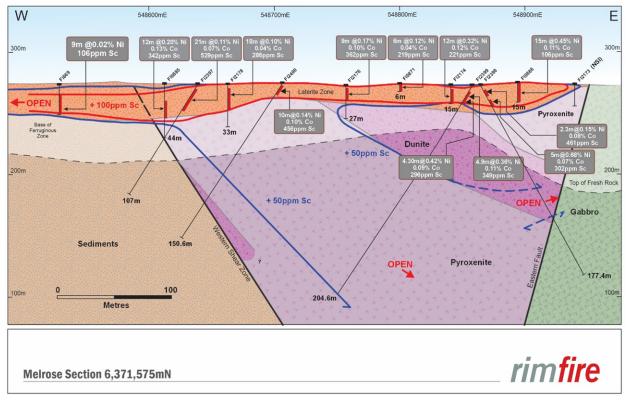


Figure 7: Melrose prospect – cross section 6371575N showing rock types and scandium.

Table 1 – Diamond Drillhole Specifications (MGA Zone 55). JORC details for Rimfire's diamond drilling at Melrose has been previously released in Rimfire's ASX Announcement dated 20 October 2022.

Hole ID	Easting	Northing	EOH (m)	Azi°	Dip°
FI2397	548,690	6,371,575	107.0	270	-55
FI2398	548,850	6,371,575	177.4	90	-60
FI2399	548,850	6,371,575	204.6	270	-55
FI2400	548,645	6,371,605	150.6	270	-55

Table 1: Scandium drill assay data for Rimfire diamond drillholes – FI2397 to FI2400. Note that all core samples were analysed for scandium by the ICP analytical method with selective re-assay by the XRF method as shown. XRF typically returns a higher scandium value compared to the XRF ICP method. Refer to the JORC Table 1 for more details.

Hole_id	From	То	Interval	Sample_type	Rock type	Weathering	ME-XRF12n_Sc%	ME-ICP61_Scppm
FI2397	1.7	3.0	1.3	PQ_1/4 core	Laterite	Strong	0.013	129
FI2397	3.0	4.0	1.0	PQ_1/4 core	Laterite	Strong	0.030	256
FI2397	4.0	5.0	1.0	PQ_1/4 core	Laterite	Strong	0.036	334
FI2397	5.0	6.0	1.0	PQ_1/4 core	Laterite	Strong	0.031	290
FI2397	6.0	7.0	1.0	PQ_1/4 core	Laterite	Strong	0.034	303
FI2397	7.0	8.0	1.0	PQ_1/4 core	Laterite	Strong	0.047	415
FI2397	8.0	9.0	1.0	PQ_1/4 core	Laterite	Strong	0.060	480
FI2397	9.0	10.0	1.0	PQ_1/4 core	Laterite	Strong	0.048	421
FI2397	10.0	11.0	1.0	PQ_1/4 core	Laterite	Strong	0.042	363
FI2397	11.0	12.0	1.0	PQ_1/4 core	Laterite	Strong	0.043	388
FI2397	12.0	13.0	1.0	PQ_1/4 core	Laterite	Strong	0.049	435
FI2397	13.0	14.0	1.0	PQ_1/4 core	Laterite	Strong	0.050	428
FI2397	14.0	15.0	1.0	PQ_1/4 core	Laterite	Strong	0.057	472
FI2397	15.0	16.0	1.0	PQ_1/4 core	Laterite	Strong	0.048	431
FI2397	16.0	17.0	1.0	PQ_1/4 core	Laterite	Strong	0.058	503
FI2397	17.0	18.0	1.0	PQ_1/4 core	Laterite	Strong	0.075	665
FI2397	18.0	19.0	1.0	PQ_1/4 core	Laterite	Strong	0.090	812
FI2397	19.0	20.0	1.0	PQ_1/4 core	Laterite	Strong	0.091	799
FI2397	20.0	21.0	1.0	PQ_1/4 core	Laterite	Strong	0.081	683
FI2397	21.0	22.0	1.0	PQ_1/4 core	Pyroxenite	Strong	0.072	615
FI2397	22.0	23.0	1.0	PQ_1/4 core	Pyroxenite	Strong	0.047	383
FI2397	23.0	24.0	1.0	PQ_1/4 core	Pyroxenite	Strong	0.021	176
FI2397	24.0	25.0	1.0	PQ_1/4 core	Pyroxenite	Strong	0.010	101
FI2397	25.0	26.2	1.2	PQ_1/4 core	Pyroxenite	Strong	0.016	144
FI2397	26.2	27.0	0.8	PQ_1/4 core	Pyroxenite	Strong	0.014	126
FI2397	27.0	28.0	1.0	PQ_1/4 core	Pyroxenite	Moderate	0.012	90
FI2397	28.0	29.0	1.0	PQ_1/4 core	Pyroxenite	Moderate	0.008	72
FI2397	29.0	29.7	0.7	PQ_1/4 core	Pyroxenite	Moderate	0.011	96
FI2397	30.1	31.0	0.9	PQ_1/4 core	Pyroxenite	Moderate	0.010	90
FI2397	31.0	31.7	0.7	PQ_1/4 core	Pyroxenite	Moderate	0.010	81
FI2397	32.0	33.2	1.2	PQ_1/4 core	Pyroxenite	Moderate	0.010	83
FI2397	34.4	35.0	0.6	PQ_1/4 core	Pyroxenite	Moderate	0.010	73
FI2397	35.0	36.0	1.0	PQ_1/4 core	Pyroxenite	Moderate	0.009	69
FI2397	37.4	38.0	0.6	PQ_1/4 core	Pyroxenite	Moderate	0.010	72
FI2397	38.0	38.8	0.8	PQ_1/4 core	Pyroxenite	Moderate	0.010	87
FI2397	38.8	40.0	1.2	PQ_1/4 core	Pyroxenite	Moderate	<0.001	13
FI2397	40.0	41.0	1.0	PQ_1/4 core	Pyroxenite	Moderate	<0.001	7
FI2397	41.0	42.0	1.0	PQ_1/4 core	Pyroxenite	Moderate	<0.001	6

E10007	40.0	42.0	1.0	DO 1/1	Dumananita	Madavata	0.001	6
FI2397	42.0	43.0	1.0	PQ_1/4 core	Pyroxenite	Moderate	0.001	-
FI2397	43.0	44.0	1.0	PQ_1/4 core	Pyroxenite	Moderate	< 0.001	5
FI2397	44.0	44.9	0.9	PQ_1/4 core	Pyroxenite	Moderate	0.001	7
FI2397	44.9	45.3	0.4	PQ_1/4 core	Pyroxenite	Moderate	0.003	35
FI2397	45.3	46.0	0.7	PQ_1/4 core	Pyroxenite	Moderate		26
FI2397	46.0	47.0	1.0	PQ_1/4 core	Pyroxenite	Moderate		29
FI2397	47.0	48.1	1.1	PQ_1/4 core	Pyroxenite	Moderate		23
FI2397	48.1	49.0	0.9	PQ_1/4 core	Sediment	Moderate		25
FI2397	50.0	51.0	1.0	PQ_1/4 core	Sediment	Moderate		25
FI2397	54.0	55.0	1.0	PQ_1/4 core	Sediment	Moderate		29
FI2397	58.0	59.0	1.0	PQ_1/4 core	Sediment	Moderate		17
FI2397	62.0	63.0	1.0	PQ_1/4 core	Sediment	Moderate		9
FI2397	66.0	67.0	1.0	HQ_1/2 core	Sediment	Weak		8
FI2397	72.0	73.0	1.0	HQ_1/2 core	Sediment	Fresh		9
FI2397	76.0	77.0	1.0	HQ_1/2 core	Sediment	Fresh		10
FI2397	80.0	81.0	1.0	HQ_1/2 core	Sediment	Fresh		13
FI2397	84.0	85.0	1.0	HQ_1/2 core	Sediment	Fresh		16
FI2397	88.0	89.0	1.0	HQ_1/2 core	Sediment	Fresh		17
FI2397	92.0	93.0	1.0	HQ_1/2 core	Sediment	Fresh		15
FI2397	96.0	97.0	1.0	HQ_1/2 core	Sediment	Fresh		22
FI2397	100.0	101.0	1.0	HQ_1/2 core	Sediment	Fresh		17
FI2397	104.0	105.0	1.0	HQ_1/2 core	Sediment	Fresh		12
FI2398	0.7	2.0	1.3	PQ_1/4 core	Laterite	Strong	0.003	38
FI2398	2.0	3.0	1.0	PQ_1/4 core	Laterite	Strong	0.012	110
FI2398	3.0	4.0	1.0	PQ_1/4 core	Laterite	Strong	0.013	120
FI2398	4.0	5.0	1.0	PQ_1/4 core	Laterite	Strong	0.017	146
FI2398	5.0	6.0	1.0	PQ_1/4 core	Laterite	Strong	0.028	263
FI2398	6.4	7.0	0.6	PQ_1/4 core	Laterite	Strong	0.045	416
FI2398	7.0	8.0	1.0	PQ_1/4 core	Laterite	Strong	0.042	384
FI2398	8.0	8.7	0.7	PQ_1/4 core	Laterite	Strong	0.053	478
FI2398	9.3	10.0	0.7	PQ_1/4 core	Laterite	Moderate	0.016	143
FI2398	10.0	11.3	1.3	PQ_1/4 core	Laterite	Moderate	0.017	166
FI2398	12.3	13.0	0.7	PQ_1/4 core	Laterite	Moderate	0.025	233
FI2398	13.0	14.0	1.0	PQ_1/4 core	Laterite	Moderate	0.015	149
FI2398	14.0	14.8	0.8	PQ_1/4 core	Laterite	Moderate	0.018	167
FI2398	15.3	16.0	0.7	PQ_1/4 core	Laterite	Moderate	0.015	146
FI2398	16.0	17.0	1.0	PQ_1/4 core	Laterite	Moderate	0.022	208
FI2398	17.0	18.0	1.0	PQ_1/4 core	Laterite	Moderate	0.042	377
FI2398	18.0	19.0	1.0	PQ_1/4 core	Laterite	Moderate	0.036	322
FI2398	19.0	20.0	1.0	PQ_1/4 core	Laterite	Moderate	0.023	221
FI2398	20.0	21.0	1.0	PQ_1/4 core	Laterite	Moderate	0.028	258
FI2398	21.0	22.0	1.0	PQ_1/4 core	Laterite	Moderate	0.012	106
FI2398	22.0	23.0	1.0	PQ_1/4 core	Laterite	Moderate	0.006	52
FI2398	23.0	24.0	1.0	PQ 1/4 core	Laterite	Moderate	0.006	60
FI2398	24.0	25.0	1.0	PQ_1/4 core	Laterite	Moderate	0.005	51
0 0 0	•	_0.0					0.000	τ.

FIDDOD	25.0	20.0	1.0	DO 1/1	L et e vite	Madanata	0.000	54
FI2398	25.0	26.0	1.0	PQ_1/4 core	Laterite	Moderate	0.006	54
FI2398	26.0	27.0	1.0	PQ_1/4 core	Laterite	Moderate	0.008	62
FI2398	27.0	28.0	1.0	PQ_1/4 core	Pyroxenite	Weak	0.007	62
FI2398	28.0	29.0	1.0	PQ_1/4 core	Pyroxenite	Weak	0.007	61
FI2398	29.0	30.0	1.0	PQ_1/4 core	Pyroxenite	Weak	0.007	59
FI2398	30.0	31.0	1.0	PQ_1/4 core	Pyroxenite	Weak		57
FI2398	31.0	32.0	1.0	PQ_1/4 core	Pyroxenite	Weak		52
FI2398	32.0	33.0	1.0	PQ_1/4 core	Pyroxenite	Weak		39
FI2398	33.0	34.0	1.0	PQ_1/4 core	Pyroxenite	Weak		33
FI2398	34.0	35.0	1.0	PQ_1/4 core	Pyroxenite	Weak		43
FI2398	35.0	36.0	1.0	PQ_1/4 core	Pyroxenite	Weak		41
FI2398	36.0	37.0	1.0	PQ_1/4 core	Pyroxenite	Weak		31
FI2398	37.0	38.0	1.0	PQ_1/4 core	Pyroxenite	Weak		19
FI2398	38.0	39.0	1.0	PQ_1/4 core	Pyroxenite	Weak		16
FI2398	39.0	40.0	1.0	PQ_1/4 core	Pyroxenite	Weak		38
FI2398	40.0	40.8	0.8	PQ_1/4 core	Pyroxenite	Weak		40
FI2398	40.8	42.0	1.2	HQ_1/2 core	Pyroxenite	Weak		43
FI2398	42.0	43.0	1.0	HQ_1/2 core	Pyroxenite	Weak		48
FI2398	43.0	44.0	1.0	HQ_1/2 core	Pyroxenite	Weak		34
FI2398	44.0	45.0	1.0	HQ_1/2 core	Pyroxenite	Weak		11
FI2398	45.0	46.0	1.0	HQ_1/2 core	Pyroxenite	Weak		15
FI2398	46.0	47.0	1.0	HQ_1/2 core	Pyroxenite	Weak		40
FI2398	47.0	48.0	1.0	HQ_1/2 core	Pyroxenite	Weak		39
FI2398	48.0	49.0	1.0	HQ_1/2 core	Pyroxenite	Weak		24
FI2398	49.0	50.0	1.0	HQ_1/2 core	Pyroxenite	Weak		17
FI2398	50.0	51.0	1.0	HQ_1/2 core	Pyroxenite	Weak		13
FI2398	51.0	52.0	1.0	HQ_1/2 core	Pyroxenite	Weak		10
FI2398	52.0	53.0	1.0	HQ_1/2 core	Pyroxenite	Weak		13
FI2398	53.0	54.0	1.0	HQ_1/2 core	Pyroxenite	Weak		46
FI2398	54.0	55.0	1.0	HQ_1/2 core	Pyroxenite	Weak		15
FI2398	55.0	56.0	1.0	HQ_1/2 core	Pyroxenite	Weak		12
FI2398	56.0	57.0	1.0	HQ_1/2 core	Pyroxenite	Weak		36
FI2398	57.0	58.0	1.0	HQ_1/2 core	Pyroxenite	Weak		18
FI2398	58.0	59.0	1.0	HQ_1/2 core	Pyroxenite	Weak		21
FI2398	59.0	60.0	1.0	HQ_1/2 core	Pyroxenite	Weak		13
FI2398	60.0	61.0	1.0	HQ_1/2 core	Pyroxenite	Weak		23
FI2398	61.0	62.0	1.0	HQ_1/2 core	Pyroxenite	Weak		14
FI2398	62.0	63.0	1.0	HQ_1/2 core	Pyroxenite	Weak		16
FI2398	63.0	64.0	1.0	HQ_1/2 core	Pyroxenite	Weak		21
FI2398	64.0	65.0	1.0	HQ_1/2 core	Pyroxenite	Weak		31
FI2398	65.0	66.0	1.0	HQ_1/2 core	Pyroxenite	Weak		22
FI2398	66.0	67.0	1.0	HQ_1/2 core	Dunite	Weak		37
FI2398	67.0	68.0	1.0	HQ_1/2 core	Dunite	Weak		44
FI2398	68.0	69.0	1.0	HQ_1/2 core	Dunite	Weak		35
FI2398	69.0	70.0	1.0	HQ_1/2 core	Dunite	Weak		24
				- <u>-</u>				

E10000	70.0	74.0	4.0	110 1/0	Durvita		40
FI2398	70.0	71.0	1.0	HQ_1/2 core	Dunite	Weak	19
FI2398	71.0	72.0	1.0	HQ_1/2 core	Dunite	Weak	38
FI2398	72.0	73.0	1.0	HQ_1/2 core	Dunite	Weak	10
FI2398	73.0	74.0	1.0	HQ_1/2 core	Dunite	Weak	26
FI2398	74.0	75.0	1.0	HQ_1/2 core	Dunite	Weak	17
FI2398	75.0	76.0	1.0	HQ_1/2 core	Dunite	Weak	10
FI2398	76.0	77.0	1.0	HQ_1/2 core	Dunite	Weak	5
FI2398	77.0	78.0	1.0	HQ_1/2 core	Dunite	Weak	11
FI2398	78.0	79.0	1.0	HQ_1/2 core	Pyroxenite	Weak	36
FI2398	79.0	80.0	1.0	HQ_1/2 core	Pyroxenite	Weak	51
FI2398	80.0	81.0	1.0	HQ_1/2 core	Pyroxenite	Weak	58
FI2398	81.0	82.0	1.0	HQ_1/2 core	Pyroxenite	Weak	46
FI2398	82.0	83.0	1.0	HQ_1/2 core	Pyroxenite	Weak	52
FI2398	83.0	84.0	1.0	HQ_1/2 core	Pyroxenite	Weak	25
FI2398	84.0	85.0	1.0	HQ_1/2 core	Pyroxenite	Weak	51
FI2398	85.0	86.0	1.0	HQ_1/2 core	Pyroxenite	Weak	54
FI2398	86.0	87.0	1.0	HQ_1/2 core	Dunite	Weak	44
FI2398	87.0	88.0	1.0	HQ_1/2 core	Dunite	Weak	28
FI2398	88.0	89.0	1.0	HQ_1/2 core	Dunite	Weak	35
FI2398	89.0	90.0	1.0	HQ_1/2 core	Dunite	Weak	33
FI2398	90.0	91.0	1.0	HQ_1/2 core	Dunite	Fresh	15
FI2398	91.0	92.0	1.0	HQ_1/2 core	Dunite	Fresh	12
FI2398	92.0	93.0	1.0	HQ_1/2 core	Dunite	Fresh	19
FI2398	93.0	94.0	1.0	HQ_1/2 core	Dunite	Fresh	24
FI2398	94.0	95.0	1.0	HQ_1/2 core	Dunite	Fresh	18
FI2398	95.0	96.0	1.0	HQ_1/2 core	Dunite	Fresh	18
FI2398	96.0	97.0	1.0	HQ_1/2 core	Dunite	Fresh	16
FI2398	97.0	98.0	1.0	HQ_1/2 core	Dunite	Fresh	17
FI2398	98.0	99.0	1.0	HQ_1/2 core	Dunite	Fresh	32
FI2398	99.0	100.0	1.0	HQ_1/2 core	Dunite	Fresh	13
FI2398	100.0	101.0	1.0	HQ_1/2 core	Dunite	Fresh	12
FI2398	101.0	102.0	1.0	HQ_1/2 core	Dunite	Fresh	13
FI2398	102.0	103.0	1.0	HQ_1/2 core	Dunite	Fresh	15
FI2398	103.0	104.0	1.0	HQ_1/2 core	Dunite	Fresh	35
FI2398	104.0	105.0	1.0	HQ_1/2 core	Dunite	Fresh	56
FI2398	105.0	106.0	1.0	HQ_1/2 core	Dunite	Fresh	70
FI2398	108.0	109.0	1.0	HQ_1/2 core	Dunite	Fresh	80
FI2398	110.0	111.0	1.0	HQ_1/2 core	Dunite	Fresh	73
FI2398	112.0	113.0	1.0	HQ_1/2 core	Dunite	Fresh	77
FI2398	114.0	115.0	1.0	HQ 1/2 core	Dunite	Fresh	77
FI2398	116.0	117.0	1.0	HQ_1/2 core	Dunite	Fresh	71
FI2398	118.0	119.0	1.0	HQ_1/2 core	Dunite	Fresh	74
FI2398	120.0	121.0	1.0	HQ_1/2 core	Dunite	Fresh	74
FI2398	122.0	123.0	1.0	HQ 1/2 core	Dunite	Fresh	76
FI2398	124.0	125.0	1.0	HQ_1/2 core	Dunite	Fresh	73
2000	0	.20.0	1.0	114_1/2 0010	Durinto	110011	

	126.0	127.0	1.0					
112330	128.0	129.0	1.0	HQ_1/2 core HQ_1/2 core	Dunite Gabbro	Fresh Fresh		66 36
FI2398	130.0	131.0	1.0	HQ_1/2 core	Gabbro	Fresh		42
	132.0	133.0	1.0	HQ_1/2 core	Gabbro	Fresh		42
	134.0	135.0	1.0	HQ_1/2 core	Gabbro	Fresh		41
	136.0	137.0	1.0	HQ_1/2 core	Gabbro	Fresh		41
	138.0	139.0	1.0	HQ_1/2 core	Gabbro	Fresh		50
	140.0	141.0	1.0	HQ_1/2 core	Gabbro	Fresh		50
	142.0	143.0	1.0	HQ_1/2 core	Gabbro	Fresh		48
FI2398	144.0	145.0	1.0	HQ_1/2 core	Gabbro	Fresh		45
	146.0	147.0	1.0	HQ_1/2 core	Gabbro	Fresh		43
	148.0	149.0	1.0	HQ_1/2 core	Gabbro	Fresh		46
FI2398	150.0	151.0	1.0	HQ_1/2 core	Gabbro	Fresh		53
FI2398	152.0	153.0	1.0	HQ_1/2 core	Gabbro	Fresh		52
FI2398	154.0	155.0	1.0	HQ_1/2 core	Gabbro	Fresh		43
FI2398	156.0	157.0	1.0	HQ_1/2 core	Gabbro	Fresh		45
FI2398	157.0	158.0	1.0	HQ_1/2 core	Gabbro	Fresh		51
FI2398	160.0	161.0	1.0	HQ_1/2 core	Gabbro	Fresh		48
FI2398	162.0	163.0	1.0	HQ_1/2 core	Gabbro	Fresh		50
FI2398	164.0	165.0	1.0	HQ_1/2 core	Gabbro	Fresh		51
FI2398	166.0	167.0	1.0	HQ_1/2 core	Gabbro	Fresh		50
FI2398	168.0	169.0	1.0	HQ_1/2 core	Gabbro	Fresh		55
FI2398	170.0	171.0	1.0	HQ_1/2 core	Gabbro	Fresh		53
FI2398	172.0	173.0	1.0	HQ_1/2 core	Gabbro	Fresh		51
FI2398	174.0	175.0	1.0	HQ_1/2 core	Gabbro	Fresh		51
FI2398	176.0	177.4	1.4	HQ_1/2 core	Gabbro	Fresh		50
FI2399	0.0	1.0	1.0	PQ_1/4 core	Laterite	Strong	0.004	39
FI2399	1.0	2.0	1.0	PQ_1/4 core	Laterite	Strong	0.001	30
FI2399	2.0	3.0	1.0	PQ_1/4 core	Laterite	Strong	0.004	41
FI2399	3.0	4.0	1.0	PQ_1/4 core	Laterite	Strong	0.004	43
FI2399	4.0	5.0	1.0	PQ_1/4 core	Laterite	Strong	0.010	105
FI2399	5.0	6.0	1.0	PQ_1/4 core	Laterite	Strong	0.024	233
FI2399	6.0	7.0	1.0	PQ_1/4 core	Laterite	Strong	0.034	285
FI2399	7.0	8.0	1.0	PQ_1/4 core	Laterite	Strong	0.045	359
FI2399	8.0	9.0	1.0	PQ_1/4 core	Laterite	Strong	0.055	496
FI2399	9.0	9.9	0.9	PQ_1/4 core	Laterite	Strong	0.051	461
FI2399	10.1	11.0	0.9	PQ_1/4 core	Laterite	Strong	0.021	203
FI2399	11.0	12.0	1.0	PQ_1/4 core	Laterite	Strong	0.017	162
FI2399	12.0	13.0	1.0	PQ_1/4 core	Laterite	Strong	0.039	368
FI2399	13.0	14.0	1.0	PQ_1/4 core	Laterite	Strong	0.041	378
FI2399	14.0	14.4	0.4	PQ_1/4 core	Laterite	Strong	0.028	240
FI2399	15.3	16.0	0.7	PQ_1/4 core	Dunite	Moderate	0.021	182
FI2399	16.0	17.0	1.0	PQ_1/4 core	Dunite	Moderate		90
FI2399	17.0	18.0	1.0	PQ_1/4 core	Dunite	Moderate		80
FI2399	18.0	19.0	1.0	PQ_1/4 core	Dunite	Moderate		70

E10000	10.0	20.0	4.0	DO 1/1	Duraita	Madanata	70
FI2399	19.0	20.0	1.0	PQ_1/4 core	Dunite	Moderate	78
FI2399	20.0	21.0	1.0	PQ_1/4 core	Dunite	Moderate	34
FI2399	21.0	22.0	1.0	PQ_1/4 core	Dunite	Moderate	59
FI2399	22.0	23.0	1.0	PQ_1/4 core	Dunite	Moderate	35
FI2399	23.0	24.0	1.0	PQ_1/4 core	Dunite	Moderate	40
FI2399	24.0	25.0	1.0	PQ_1/4 core	Dunite	Moderate	25
FI2399	25.0	26.0	1.0	PQ_1/4 core	Dunite	Weak	49
FI2399	26.0	27.0	1.0	PQ_1/4 core	Dunite	Weak	38
FI2399	27.0	28.0	1.0	PQ_1/4 core	Dunite	Weak	25
FI2399	28.0	29.0	1.0	PQ_1/4 core	Dunite	Weak	48
FI2399	29.0	30.0	1.0	PQ_1/4 core	Dunite	Weak	44
FI2399	30.0	31.0	1.0	PQ_1/4 core	Dunite	Weak	20
FI2399	31.0	32.0	1.0	PQ_1/4 core	Dunite	Weak	27
FI2399	32.0	33.0	1.0	PQ_1/4 core	Dunite	Weak	28
FI2399	33.0	34.0	1.0	PQ_1/4 core	Dunite	Weak	23
FI2399	34.0	35.0	1.0	PQ_1/4 core	Dunite	Weak	29
FI2399	35.0	36.0	1.0	PQ_1/4 core	Dunite	Weak	28
FI2399	36.0	37.0	1.0	HQ_1/2 core	Dunite	Weak	19
FI2399	37.0	37.5	0.5	HQ_1/2 core	Dunite	Weak	24
FI2399	37.8	39.3	1.5	HQ_1/2 core	Dunite	Weak	19
FI2399	39.5	40.0	0.5	HQ_1/2 core	Dunite	Weak	14
FI2399	40.0	41.0	1.0	HQ_1/2 core	Dunite	Weak	39
FI2399	41.0	42.0	1.0	HQ_1/2 core	Dunite	Weak	23
FI2399	42.0	43.0	1.0	HQ_1/2 core	Dunite	Fresh	12
FI2399	43.0	44.0	1.0	HQ_1/2 core	Dunite	Fresh	11
FI2399	44.0	45.0	1.0	HQ_1/2 core	Dunite	Fresh	11
FI2399	45.0	46.0	1.0	HQ_1/2 core	Dunite	Fresh	11
FI2399	46.0	47.0	1.0	HQ_1/2 core	Dunite	Fresh	11
FI2399	47.0	48.0	1.0	HQ_1/2 core	Dunite	Fresh	8
FI2399	48.0	49.0	1.0	HQ_1/2 core	Dunite	Fresh	9
FI2399	49.0	50.0	1.0	HQ_1/2 core	Dunite	Fresh	22
FI2399	50.0	51.0	1.0	HQ_1/2 core	Dunite	Fresh	12
FI2399	51.0	52.0	1.0	HQ_1/2 core	Dunite	Fresh	11
FI2399	52.0	53.0	1.0	HQ_1/2 core	Dunite	Fresh	14
FI2399	53.0	54.0	1.0	HQ_1/2 core	Dunite	Fresh	12
FI2399	54.0	55.0	1.0	HQ_1/2 core	Dunite	Fresh	14
FI2399	55.0	56.0	1.0	HQ_1/2 core	Dunite	Fresh	14
FI2399	56.0	57.0	1.0	HQ_1/2 core	Dunite	Fresh	11
FI2399	57.0	58.0	1.0	HQ_1/2 core	Dunite	Fresh	15
FI2399	58.0	59.0	1.0	HQ 1/2 core	Dunite	Fresh	14
FI2399	59.0	60.0	1.0	HQ_1/2 core	Dunite	Fresh	13
FI2399	60.0	61.0	1.0	HQ_1/2 core	Dunite	Fresh	12
FI2399	61.0	62.0	1.0	HQ_1/2 core	Dunite	Fresh	13
FI2399	62.0	63.0	1.0	HQ 1/2 core	Dunite	Fresh	11
FI2399	63.0	64.0	1.0	HQ_1/2 core	Dunite	Fresh	12
112000	00.0	07.0	1.0	1102_1/2 0016	Danito	110311	12

F10000	01.0	05.0	4.0	110 1/0	Dunita	Freedo		40
FI2399	64.0	65.0	1.0	HQ_1/2 core	Dunite	Fresh	0.000	13
FI2399	65.0	66.0	1.0	HQ_1/2 core	Dunite	Fresh	0.002	12
FI2399	66.0	67.0	1.0	HQ_1/2 core	Dunite	Fresh	0.001	10
FI2399	67.0	68.0	1.0	HQ_1/2 core	Dunite	Fresh	0.001	9
FI2399	68.0	69.0	1.0	HQ_1/2 core	Dunite	Fresh	0.001	8
FI2399	69.0	70.0	1.0	HQ_1/2 core	Dunite	Fresh	0.001	7
FI2399	70.0	71.0	1.0	HQ_1/2 core	Dunite	Fresh	0.001	9
FI2399	71.0	72.0	1.0	HQ_1/2 core	Dunite	Fresh	0.001	10
FI2399	72.0	73.0	1.0	HQ_1/2 core	Dunite	Fresh	<0.001	8
FI2399	73.0	74.0	1.0	HQ_1/2 core	Dunite	Fresh	0.002	9
FI2399	74.0	75.0	1.0	HQ_1/2 core	Dunite	Fresh	0.001	9
FI2399	75.0	76.0	1.0	HQ_1/2 core	Dunite	Fresh	0.001	12
FI2399	76.0	77.0	1.0	HQ_1/2 core	Dunite	Fresh	0.002	13
FI2399	77.0	77.5	0.5	HQ_1/2 core	Dunite	Fresh	0.002	14
FI2399	77.9	79.0	1.1	HQ_1/2 core	Dunite	Fresh	0.002	17
FI2399	79.0	80.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.003	36
FI2399	81.0	82.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.006	59
FI2399	83.0	84.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.008	65
FI2399	85.0	86.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.007	59
FI2399	87.0	88.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.008	60
FI2399	89.0	90.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.006	59
FI2399	91.0	92.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.007	58
FI2399	93.0	94.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.008	67
FI2399	95.0	96.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.007	62
FI2399	97.0	98.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.007	58
FI2399	99.0	100.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.008	66
FI2399	101.0	102.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.008	75
FI2399	103.0	104.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.009	69
FI2399	105.0	106.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.007	60
FI2399	107.0	108.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.006	53
FI2399	109.0	110.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.006	53
FI2399	111.0	112.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.007	58
FI2399	113.0	114.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.009	72
FI2399	115.0	116.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.007	60
FI2399	117.0	118.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.006	51
FI2399	119.0	120.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.007	50
FI2399	121.0	122.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.005	46
FI2399	123.0	124.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.005	45
FI2399	125.0	126.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.005	40
FI2399	127.0	128.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.005	45
FI2399	129.0	130.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.005	50
FI2399	131.0	132.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.008	63
FI2399	133.0	134.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.007	68
FI2399	135.0	136.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.008	67
FI2399	137.0	138.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.007	64
112000	107.0	100.0	1.0	1/2 0010	i yroxenite	116311	0.001	7 4

F10000	400.0	140.0	1.0	110 1/2	Dumanuanita	Freeh	0.007	<u></u>
FI2399	139.0		1.0	HQ_1/2 core	Pyroxenite	Fresh	0.007	66
FI2399	141.0	142.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.008	72
FI2399	143.0	144.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.008	69
FI2399	145.0	146.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.009	71
FI2399	147.0	148.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.009	75
FI2399	149.0	150.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.009	75
FI2399	151.0	152.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.009	76
FI2399	153.0	154.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.009	76
FI2399	155.0	156.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.009	76
FI2399	157.0	158.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.010	75
FI2399	159.0	160.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.009	76
FI2399	161.0	162.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.008	73
FI2399	163.0	164.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.009	76
FI2399	165.0	166.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.009	80
FI2399	167.0	168.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.009	74
FI2399	169.0	170.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.009	76
FI2399	171.0	172.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.009	72
FI2399	173.0	174.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.008	73
FI2399	175.0	176.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.009	72
FI2399	177.0	178.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.009	71
FI2399	179.0	180.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.009	77
FI2399	181.0	182.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.009	76
FI2399	183.0	184.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.010	76
FI2399	185.0	186.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.009	78
FI2399	187.0	188.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.009	79
FI2399	189.0	190.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.008	69
FI2399	191.0	192.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.008	71
FI2399	193.0	194.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.009	73
FI2399	195.0	196.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.008	62
FI2399	197.0	198.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.008	71
FI2399	199.0	200.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.008	72
FI2399	201.0	202.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.008	74
FI2399	203.0	204.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.007	65
FI2400	0.0	1.0	1.0	PQ_1/4 core	Laterite	Strong	0.011	118
FI2400	1.0	2.0	1.0	PQ_1/4 core	Laterite	Strong	0.021	198
FI2400	2.0	3.0	1.0	PQ_1/4 core	Laterite	Strong	0.030	287
FI2400	3.0	4.0	1.0	PQ_1/4 core	Laterite	Strong	0.035	330
FI2400	4.0	5.0	1.0	PQ_1/4 core	Laterite	Strong	0.040	365
FI2400	5.0	6.0	1.0	PQ_1/4 core	Laterite	Strong	0.050	458
FI2400	6.0	7.0	1.0	PQ_1/4 core	Laterite	Strong	0.057	529
FI2400	7.0	8.0	1.0	PQ_1/4 core	Laterite	Strong	0.057	531
FI2400	8.0	9.0	1.0	PQ_1/4 core	Laterite	Strong	0.060	532
FI2400	9.0	10.0	1.0	PQ_1/4 core	Laterite	Strong	0.060	565
FI2400	10.0	11.0	1.0	PQ_1/4 core	Laterite	Strong	0.046	424
FI2400	11.0	12.0	1.0	PQ_1/4 core	Pyroxenite	Moderate	0.018	160

FI0400	10.0	40.0	1.0	DO 1/1	Dumouranita	Madanata	0.045	405
FI2400	12.0	13.0	1.0	PQ_1/4 core	Pyroxenite	Moderate	0.015	125
FI2400	13.0	14.0	1.0	PQ_1/4 core	Pyroxenite	Moderate	0.012	117
FI2400	14.0	15.0	1.0	PQ_1/4 core	Pyroxenite	Moderate	0.011	106
FI2400	15.0	16.0	1.0	PQ_1/4 core	Pyroxenite	Moderate	0.010	92
FI2400	16.0	17.0	1.0	PQ_1/4 core	Pyroxenite	Moderate	0.008	80
FI2400	17.0	18.0	1.0	PQ_1/4 core	Pyroxenite	Moderate	0.008	84
FI2400	18.0	19.0	1.0	PQ_1/4 core	Pyroxenite	Moderate	0.008	77
FI2400	19.0	20.0	1.0	PQ_1/4 core	Pyroxenite	Moderate	0.008	75
FI2400	20.0	21.0	1.0	PQ_1/4 core	Pyroxenite	Moderate	0.008	74
FI2400	22.0	23.0	1.0	PQ_1/4 core	Pyroxenite	Moderate	0.007	66
FI2400	24.0	25.0	1.0	PQ_1/4 core	Pyroxenite	Moderate	0.006	59
FI2400	26.0	27.0	1.0	PQ_1/4 core	Pyroxenite	Moderate	0.005	54
FI2400	28.0	29.0	1.0	PQ_1/4 core	Pyroxenite	Moderate	0.008	78
FI2400	30.0	31.0	1.0	HQ_1/2 core	Pyroxenite	Moderate	0.008	79
FI2400	32.0	33.0	1.0	HQ_1/2 core	Pyroxenite	Moderate	0.008	79
FI2400	34.0	35.0	1.0	HQ_1/2 core	Pyroxenite	Moderate	0.008	72
FI2400	36.0	37.0	1.0	HQ_1/2 core	Pyroxenite	Moderate	0.009	78
FI2400	38.0	39.0	1.0	HQ_1/2 core	Pyroxenite	Moderate	0.008	81
FI2400	40.0	41.0	1.0	HQ_1/2 core	Pyroxenite	Moderate	0.008	77
FI2400	42.0	43.0	1.0	HQ_1/2 core	Pyroxenite	Moderate	0.007	70
FI2400	44.0	45.0	1.0	HQ_1/2 core	Pyroxenite	Moderate	0.006	67
FI2400	46.0	47.0	1.0	HQ_1/2 core	Pyroxenite	Moderate	0.007	64
FI2400	48.0	49.0	1.0	HQ_1/2 core	Pyroxenite	Moderate	0.007	64
FI2400	50.0	51.0	1.0	HQ_1/2 core	Pyroxenite	Moderate	0.007	70
FI2400	52.0	53.0	1.0	HQ_1/2 core	Pyroxenite	Moderate	0.007	68
FI2400	54.0	55.0	1.0	HQ_1/2 core	Pyroxenite	Moderate	0.005	57
FI2400	56.0	57.0	1.0	HQ_1/2 core	Pyroxenite	Moderate	0.006	53
FI2400	58.0	59.0	1.0	HQ_1/2 core	Pyroxenite	Moderate	0.006	66
FI2400	60.0	61.0	1.0	HQ 1/2 core	Pyroxenite	Moderate	0.005	57
FI2400	62.0	63.0	1.0	HQ_1/2 core	Pyroxenite	Moderate	0.006	60
FI2400	64.0	65.0	1.0	 HQ_1/2 core	Pyroxenite	Weak	0.007	64
FI2400	66.0	67.0	1.0	HQ_1/2 core	Pyroxenite	Weak	0.007	62
FI2400	68.0	69.0	1.0	HQ_1/2 core	Pyroxenite	Weak	0.007	65
FI2400	70.0	71.0	1.0	HQ_1/2 core	Pyroxenite	Weak	0.006	62
FI2400	72.0	73.0	1.0	HQ 1/2 core	Pyroxenite	Weak	0.006	61
FI2400	74.0	75.0	1.0	HQ_1/2 core	Pyroxenite	Weak	0.006	59
FI2400	76.0	77.0	1.0	HQ_1/2 core	Pyroxenite	Weak	0.006	61
FI2400	78.0	79.0	1.0	HQ_1/2 core	Pyroxenite	Weak	0.006	62
FI2400	80.0	81.0	1.0	HQ 1/2 core	Pyroxenite	Fresh	0.007	69
FI2400	82.0	83.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.006	67
FI2400	84.0	85.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.005	61
FI2400	86.0	87.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.008	77
FI2400	88.0	89.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.008	72
FI2400	90.0	91.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.007	72
FI2400	90.0 91.0	91.0	1.0	HQ_1/2 core HQ_1/2 core	Pyroxenite	Fresh	0.007	71
112400	ອ1.0	92.U	1.0		Fyruxenite	riesii	0.007	/1

FI2400	92.0	93.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.004	37
FI2400	94.0	95.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.004	37
FI2400	94.0 95.0	96.0	1.0	HQ_1/2 core	Pyroxenite	Fresh	0.004	27
FI2400	96.0	97.0	1.0	HQ 1/2 core	Dunite	Fresh	0.002	51
FI2400	97.0	98.0	1.0		Dunite	Fresh	0.003	29
FI2400	97.0	98.0 99.0	1.0	HQ_1/2 core	Dunite	Fresh	0.003	29
FI2400	99.0			HQ_1/2 core				22
		100.0	1.0	HQ_1/2 core	Dunite	Fresh	0.003	6
FI2400	100.0	101.0	1.0	HQ_1/2 core	Dunite	Fresh	< 0.001	4
FI2400	101.0	102.0	1.0	HQ_1/2 core	Dunite	Fresh	< 0.001	
FI2400	102.0	103.0	1.0	HQ_1/2 core	Dunite	Fresh	< 0.001	4
FI2400	103.0	104.0	1.0	HQ_1/2 core	Dunite	Fresh	< 0.001	7
FI2400	104.0	105.0	1.0	HQ_1/2 core	Dunite	Fresh	< 0.001	6
FI2400	105.0	106.0	1.0	HQ_1/2 core	Dunite	Fresh	< 0.001	6
FI2400	106.0	107.0	1.0	HQ_1/2 core	Dunite	Fresh	0.001	7
FI2400	107.0	108.0	1.0	HQ_1/2 core	Dunite	Fresh	<0.001	4
FI2400	108.0	109.0	1.0	HQ_1/2 core	Dunite	Fresh	<0.001	4
FI2400	109.0	110.0	1.0	HQ_1/2 core	Dunite	Fresh	<0.001	4
FI2400	110.0	111.0	1.0	HQ_1/2 core	Dunite	Fresh	<0.001	6
FI2400	111.0	112.0	1.0	HQ_1/2 core	Dunite	Fresh	0.001	22
FI2400	112.0	113.0	1.0	HQ_1/2 core	Dunite	Fresh	0.002	30
FI2400	113.0	114.0	1.0	HQ_1/2 core	Dunite	Fresh	0.002	36
FI2400	114.0	115.0	1.0	HQ_1/2 core	Dunite	Fresh	0.002	32
FI2400	115.0	116.0	1.0	HQ_1/2 core	Dunite	Fresh	0.002	29
FI2400	116.0	117.0	1.0	HQ_1/2 core	Dunite	Fresh	0.002	29
FI2400	117.0	118.0	1.0	HQ_1/2 core	Sediment	Fresh	0.001	22
FI2400	118.0	119.0	1.0	HQ_1/2 core	Sediment	Fresh	0.001	24
FI2400	119.0	120.0	1.0	HQ_1/2 core	Sediment	Fresh	0.002	27
FI2400	121.0	122.0	1.0	HQ_1/2 core	Sediment	Fresh	<0.001	7
FI2400	123.0	124.0	1.0	HQ_1/2 core	Sediment	Fresh	0.001	24
FI2400	125.0	126.0	1.0	HQ_1/2 core	Sediment	Fresh	0.001	27
FI2400	127.0	128.0	1.0	HQ_1/2 core	Sediment	Fresh	0.002	32
FI2400	129.0	130.0	1.0	HQ_1/2 core	Sediment	Fresh	0.001	27
FI2400	131.0	132.0	1.0	HQ_1/2 core	Sediment	Fresh	0.002	28
FI2400	133.0	134.0	1.0	HQ_1/2 core	Sediment	Fresh	0.002	30
FI2400	135.0	136.0	1.0	HQ_1/2 core	Sediment	Fresh	0.002	28
FI2400	137.0	138.0	1.0	HQ_1/2 core	Sediment	Fresh	0.001	26
FI2400	139.0	140.0	1.0	HQ_1/2 core	Sediment	Fresh	0.002	26
FI2400	141.0	142.0	1.0	HQ_1/2 core	Sediment	Fresh	0.001	26
FI2400	143.0	144.0	1.0	HQ_1/2 core	Sediment	Fresh	0.002	30
FI2400	145.0	146.0	1.0	HQ_1/2 core	Sediment	Fresh	0.002	34
FI2400	147.0	148.0	1.0	HQ_1/2 core	Sediment	Fresh	0.002	27
FI2400	149.0	150.0	1.0	HQ_1/2 core	Sediment	Fresh	0.001	29

This announcement is authorised for release to the market by the Board of Directors of Rimfire Pacific Mining Limited.

For further information please contact:

David Hutton Managing Director / CEO Ph: +61 417 974 843 Greg Keane CFO / Investor Relations/ Alternate Director for Ian McCubbing Ph: +61 497 805 918

JORC Reporting

JORC details for Rimfire diamond drilling at Melrose has also been previously released in Rimfire's ASX Announcement dated 20 October 2022.

Table 2: JORC Code Reporting Criteria

Section 1 Sampling Techniques and Data – Aircore Drilling and Head Assay

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	This ASX Announcement details the results of a geochemical review undertaken on diamond drilling undertaken by Rimfire at the Melrose prospect in 2022. The results and details of the diamond drilling were previously reported to the market in an ASX Announcement dated 20 October 2022. Each diamond drillhole was geologically logged and half or quarter core samples were originally submitted to ALS Orange for analysis for base metals (Ni, Co, Sc) using ALS methods ME-XRF12n and ME-ICP61. Scandium assay data for every core sample is
		shown in Table 2 of this Announcement.
	Include reference to measures taken to ensure sample representativity and the appropriate calibration of any measurement tools or systems used.	To ensure sample representivity, the entire drillhole has been cut and sampled for analysis. Blank samples and reference standards were inserted into the sample sequence for QA/QC.
	Aspects of the determination of mineralisation that are Material to the Public Report.	To ensure sample representivity, and because the geology of each drilling location is largely unknown (due to no previous drilling beneath the
	In cases where 'industry standard' work has	base of weathering), the entire drillhole has been
	been done this would be relatively simple (e.g., 'reverse circulation drilling was used to	cut and sampled for analysis. Industry standard preparation and assay is conducted at ALS Pty

Criteria	JORC Code explanation	Commentary
	obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information.	Ltd in Orange, NSW, including sample crushing and pulverising prior to subsampling for an assay sample.
Drilling techniques	Drill type (e.g., core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face- sampling bit, or other type, whether core is oriented and if so, by what method, etc).	All drillholes reported in this ASX Announcement are diamond drill holes, the specifications of which are included in Table 1.
	Method of recording and assessing core and chip sample recoveries and results assessed.	For the diamond drilling reported in this ASX Announcement, rock quality and core recovery details were included in the geological logging procedure. All diamond drill core was photographed as well.
Drill sample recovery	Measures taken to maximise sample recovery and ensure representative nature of the samples.	To ensure sample representivity, and because the geology of each drilling location is largely unknown (due to no previous drilling beneath the base of weathering), the entire drillhole has been cut and sampled for analysis.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	It is not known whether a relationship exists between sample recovery and grade
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Core samples were geologically and geochemically logged to a level of detail sufficient to support appropriate Mineral Resource estimation, although that was not the objective of the diamond drilling outlined in this ASX Announcement. All diamond drill core was photographed.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the	Geological logging of is largely qualitative by nature. Relevant intersections have been geologically
Sub-sampling	relevant intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken.	logged in full. Each diamond drillhole was geologically logged and photographed. Each diamond hole was cut, and half core samples were collected and submitted to ALS Orange for analysis.
techniques and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Not Applicable as only core samples were obtained from the diamond drilling.
	For all sample types, the nature, quality, and appropriateness of the sample preparation technique.	For the diamond drilling, half core samples were collected and submitted to ALS for sample preparation and analysis using industry standard and appropriate techniques.
	Quality control procedures adopted for all	To maximise representativity of samples,

Criteria	JORC Code explanation	Commentary
	sub-sampling stages to maximise representivity of samples.	individual half core samples were collected every metre throughout the entire length of the drillhole.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	To ensure that sampling is representative of the in-situ material, individual half core samples were collected every metre throughout the entire length of the drillhole. Additionally retained half core can be subsequently resampled (1/4 core) to verify initial results if needed.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes (typically ~ 2kg) of half core are considered appropriate to the grainsize of material being sampled.
	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The methods used by ALS to analyse the half core samples for precious and base metals are industry standard. The ME-ICP61 method is a partial technique while the XRF12n method (used for the diamond drill results in this Report is considered to be total technique.
Quality of assay data and laboratory tests	For geophysical tools, spectrometers, handheld XRF instruments (pXRF), etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Not applicable as no geophysical tools were used or results of using geophysical tools were included in this Report.
	Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established.	Certified standards were submitted along half core samples to the laboratory. In addition, the scandium results included in this Report were reported based on the ME-ICP61 and ME- XRF12n analytical methods.
	The verification of significant intersections by either independent or alternative company personnel.	The significant intersections including in this Report have been verified by both Rimfire's Exploration Manager and Managing Director.
Verification of sampling and assaying	The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Not applicable as no twinned holes drilled. Sampling data was recorded on field sheets at the sample site. Field data was entered into an excel spreadsheet and saved on Cloud server. Geological logging was recorded directly in LogChief program during drilling and backed up on Cloud server. Assay results are typically reported in a digital format suitable for direct loading into a Datashed database with a 3 rd party expert consulting group.
Location of data points	Discuss any adjustment to assay data. Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	There has been no adjustment to assay data. Sample locations are recorded using handheld Garmin GPS with a nominal accuracy +/- 3m.
	Specification of the grid system used. Quality and adequacy of topographic control.	GDA94 Zone 55. Handheld GPS, which is suitable for the early stage and broad spacing of this exploration.
Data spacing and	Data spacing for reporting of	The location and spacing of drillholes discussed

Criteria	JORC Code explanation	Commentary
distribution	Exploration Results.	in this Report are given in Table 1 and various figures of this ASX Announcement.
	Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The data spacing and distribution of drilling referred to in this Announcement is not sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s).
	Whether sample compositing has been applied. Whether the orientation of sampling achieves	Sample compositing has not been applied.
Orientation of data in relation to geological structure	unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Given the early stage of exploration it is not yet known if sample spacing, and orientation achieves unbiased results.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The relationship between the drilling orientation and the orientation of key mineralised structures is considered not to have introduced a sampling bias
Sample security	The measures taken to ensure sample security.	Samples double bagged and delivered directly to the laboratory by company personnel.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	The sampling techniques and data has been reviewed by senior company personnel including the Exploration Manager and Managing Director with no issues identified.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Reported results all from Exploration Licence EL8543 at Fifield NSW which is wholly - owned by Rimfire Pacific Mining Limited. The tenement forms part of the Company's Avondale Project which is subject to an Earn In and Joint Venture Agreement with Golden Plains Resources Pty Ltd (GPR) whereby GPR can earn up to a 75% interest by completing expenditure of \$7.5M over 4 years.
		All samples were taken on Private Freehold Land. No Native Title exists. The land is used primarily for grazing and cropping.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.	The tenement is in good standing, and all work is conducted under specific approvals from NSW Department of Planning and Energy, Resources and Geoscience.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The Melrose Prospect where the drilling was conducted has not been previously explored by third parties. Rimfire undertook air core drilling and diamond drilling at Melrose during 2022.

Criteria	JORC Code explanation	Commentary
Geology	Deposit type, geological setting, and style of mineralisation.	The target area lacks geological exposure, available information indicates the bedrock geology across the project is a dominated by a central body of ultramafic intrusive and stepping out to more felsic units on the margins. The deposit type/style of mineralisation is a flat lying ferruginous and laterised zone developed on top of ultramafic hosting anomalous Ni-Co-Sc. Historic drilling has shown that the host ultramafic is platiniferous.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth. 	All diamond drillhole specifications are included within this ASX Announcement. All collar locations are shown on the figures included with this ASX Announcement.
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the Report, the Competent Person should clearly explain why this is the case.	Not applicable as no drill hole information has been excluded.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated.	 No data aggregation or weighting has been applied to the reported significant intercepts. The following low cut off grades have been used in determining the reported intercepts. Nickel (1,000 ppm - 0.1%) Cobalt (500 ppm - 0.05%) Scandium (100 ppm - 0.01%)
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Not applicable as all sample intervals were the same, i.e., 1 metre
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents have been reported.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the Reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known').	The drill results included in this Report occur either within a flat (horizontal) lying zone or dipping zone. Given all the diamond drill holes are angled, the significant intercepts are considered to represent downhole widths.

Criteria	JORC Code explanation	Commentary
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Included within the ASX Announcement
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results.	All results are included in this Announcement.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is currently no other substantive exploration data that is meaningful and material to report.
Further work	The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling).	Planned further is discussed in the document in relation to the exploration results.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Not applicable at this stage

About Rimfire

Rimfire Pacific Mining (**ASX: RIM**, "Rimfire" or the "Company") is an ASX-listed Critical Minerals exploration company which is advancing a portfolio of projects within the highly prospective Lachlan Orogen and Broken Hill districts of New South Wales.

The Company has two 100% - owned copper – gold prospective projects that are located west of Parkes and Orange in central New South Wales:

- The Valley Project located 5km west of Kincora Copper's Mordialloc porphyry copper gold discovery (KCC.ASX), and
- The Cowal Project located to the east of Evolution's Lake Cowal Copper / Gold mine (EVN: ASX).

Rimfire also has the 100% - owned Broken Hill Cobalt (Green View) Project which is located immediately west and northwest of Broken Hill and covers several targets including the interpreted along strike extension to Cobalt Blue Holdings' Railway Cobalt Deposit (COB: ASX).

Rimfire has two additional projects in the Lachlan Orogen which are being funded by Rimfire's exploration partner - Golden Plains Resources (GPR):

- Avondale Project (GPR earning up to 75%) & Fifield Project (GPR earning up to 60%)
- ✓ Both projects are prospective for high-value critical minerals nickel, cobalt, scandium, gold, and PGEs which are essential for renewable energy, electrification, and green technologies.
- ✓ The development ready Sunrise Energy Metals Nickel Cobalt Scandium Project (ASX: SRL) is adjacent to both projects.
- ✓ The Fifield Project hosts the historical Platina Lead mine, the largest producer of Platinum in Australia.

For more information on the Avondale and Fifield Earn In and Joint Venture Agreements see:

ASX Announcement: 4 May 2020 - Rimfire enters \$4.5m Earn-in Agreement ASX Announcement: 25 June 2021 - RIM Secures \$7.5m Avondale Farm Out

Competent Persons Declaration

The information in the report to which this statement is attached that relates to Exploration and Resource Results is based on information reviewed and/or compiled by David Hutton who is deemed to be a Competent Person and is a Fellow of The Australasian Institute of Mining and Metallurgy.

Mr Hutton has over 30 years' experience in the minerals industry and is the Managing Director and CEO of Rimfire Pacific Mining. Mr Hutton has sufficient experience that is relevant to the style of mineralisation and type of deposits under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'.

Mr Hutton consents to the inclusion of the matters based on the information in the form and context in which it appears.

Forward looking statements Disclaimer

This document contains "forward looking statements" as defined or implied in common law and within the meaning of the Corporations Law. Such forward looking statements may include, without limitation, (1) estimates of future capital expenditure; (2) estimates of future cash costs; (3) statements regarding future exploration results and goals.

Where the Company or any of its officers or Directors or representatives expresses an expectation or belief as to future events or results, such expectation or belief is expressed in good faith and the Company or its officers or Directors or representatives, believe to have a reasonable basis for implying such an expectation or belief.

However, forward looking statements are subject to risks, uncertainties, and other factors, which could cause actual results to differ materially from future results expressed, projected, or implied by such forward looking statements. Such risks include, but are not limited to, commodity price fluctuation, currency fluctuation, political and operational risks, governmental regulations and judicial outcomes, financial markets, and availability of key personnel. The Company does not undertake any obligation to publicly release revisions to any "forward looking statement".