

Tuesday, 20<sup>th</sup> October 2015 Company Announcement Office Australian Securities Exchange rimfire pacific mining nl a.c.n. 006 911 744

ASX Code "RIM"

Exchange Tower Suite 411, 530 Little Collins Street Melbourne Victoria Australia. 3000

T 61 3 9620 5866 F 61 3 9620 5822

E <u>rimfire@rimfire.com.au</u>

W www.rimfire.com.au

## <u>Sorpresa Drilling – Gold Lens definition in Shallow Oxide returns high grades</u> <u>Hole Fi 0662 best intersection of 3m @ 20.42g/t gold AND 4m @ 5.34g/t gold</u>

## Key Recent Activity Highlights at Fifield NSW

- The Sorpresa drilling has provided consistent high grade results in the known mineralised zone at Trench 31 area and has revealed layered gold shoots
- Best <u>1m intervals</u> (>30g/t Au) returned at Sorpresa, Trench 31 area, included:
  - Fi 0548 with 1m @ 53.30g/t Au & 74g/t Ag; Fi 0658 with 1m @ 50g/t Au & 55g/t Ag
  - o Fi 0662 with 1m @ 39.6g/t Au & 58g/t Ag; Fi 0659 with 1m @ 33.7g/t Au & 31g/t Ag
- 🕈 Recent metallurgy at Sorpresa shows promising gravity, floatation and leaching recoveries
- Numerous presentations and site visits were conducted including discussions for potential partnerships
- Regional RC drill program and soil programs gave further gold results at Eclipse Trend & East Sorpresa

Rimfire Pacific Mining NL (ASX:RIM) ("Rimfire" or "The Company") is pleased to report a series of positive gold and silver results from its RC drilling program (1,142m) at the Trench 31 area within the known Sorpresa gold and silver mineralised system at Fifield NSW.

The RC drilling was part of an ongoing assessment of the structural controls and orientation of lens areas within Sorpresa. This latest drilling forms part of an ongoing assessment of the Sorpresa Resource as the Company continues to look at development options. Further RC drilling is planned at Trench 31 area within the 4<sup>th</sup> Quarter.

## Highlights for Sorpresa Gold and Silver Lens Assessment RC Drilling at Trench 31 Area

## □ Highest Gold and Silver grade intersections (in ranked order) included the following:

| Hole<br>(location)    | Main Intersection(s)                                                                                                                                                                | Including Intersection(s)                                                                                                                    |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Fi 0662<br>(Trench31) | 3m @ 20.42g/t Au & 26g/t Ag from 20m and         1m @ 5.47g/t Au & 53g/t Ag from 36m and         7m @ 0.50g/t Au & 5g/t Ag from 38m and         4m @ 5.34g/t Au & 18g/t Ag from 45m | 1m @ 39.6g/t Au & 58g/t Ag from 21m <u>and</u><br>-<br>1m @ 1.55g/t Au & 4g/t Ag from 40m <u>and</u><br>1m @ 16.75g/t Au & 27g/t Ag from 46m |
| Fi 0548<br>(Trench31) | 2m @ 28.65g/t Au & 53g/t Ag from 39m                                                                                                                                                | 1m @ 53.30g/t Au & 74g/t Ag from 39m                                                                                                         |
| Fi 0658<br>(Trench31) | 2m @ 26.94g/t Au & 36g/t Ag from 37m                                                                                                                                                | 1m @ 50.00g/t Au & 55g/t Ag from 37m                                                                                                         |
| Fi 0663<br>(Trench31) | 10m @ 2.29g/t Au & 12g/t Ag from 21m <u>and</u><br>7m @ 3.37g/t Au & 14g/t Ag from 35m                                                                                              | 1m @ 7.96g/t Au & 66g/t Ag from 21m <u>and</u><br>1m @ 11.55g/t Au & 24g/t Ag from 36m                                                       |
| Fi 0659<br>(Trench31) | 5m @ 8.73g/t Au & 22g/t Ag from 47m <u>and</u><br>1m @ 0.85g/t Au & 17g/t Ag from 53m                                                                                               | 1m @ 33.70g/t Au & 31g/t Ag from 47m                                                                                                         |
| Fi 0547<br>(Trench31) | 3m @ 8.08g/t Au & 11g/t Ag from 15m                                                                                                                                                 | 2m @ 11.25g/t Au & 14g/t Ag from 15m                                                                                                         |
| Fi 0660<br>(Trench31) | 3m @ 3.92g/t Au & 47g/t Ag from 54m                                                                                                                                                 | 1m @ 5.52g/t Au & 73g/t Ag from 54m                                                                                                          |
| Fi 0656<br>(Trench31) | 2m @ 3.17g/t Au from 28m                                                                                                                                                            | 1m @ 5.99g/t Au from 29m                                                                                                                     |

(See Figures 1 & 2, and Table 2 for complete assay details, pages 10~16 this report)

- □ The RC drilling improves the understanding of the orientation and controls operating on the higher grade gold and silver, with results confirming continuity and a potential uplift.
- □ The Company will keep assessing the better parts of the Sorpresa mineralisation in the oxide zone aiming to increase grades, ounces and the commercial context.
- This recent drilling (and subsequent work to follow) will contribute to parts of the resource at Sorpresa moving to measured status in due course.
- Additional metallurgy assessment was completed on the oxide and primary zones at Sorpresa, looking at gravity, floatation and heap leach recoveries with encouraging results.

#### Additional comments on drilling at Trench 31

The Trench 31 area (within the overall Sorpresa resource) is yielding impressive intersections and coherent gold rich zones which are helping better define the resource geometry at this location. This is important in helping to establish potential commercial implications for parts of Sorpresa.

The drilling program successfully achieved a number of outcomes.

- 1. Provided a better understanding of the 3D gold lens shapes. This required drilling at 5 to 10m centres in the potentially higher grade parts of the resource and more accurate 3D shapes are now emerging.
- 2. The drill delineation of high grade gold has the potential to increase the resource size, if that high grade was under represented in the original wider spaced drilling.
- 3. The new high grade gold shapes allow more precision in projecting the gold into any surrounding un-drilled ground. This is important for potential discovery growth, particularly to the south of Trench31 area.
- 4. The shapes being established should assist in mine planning, if this was deemed to be viable in the future. Knowing the location of high grade gold zones should allow a more even mill feed grade, which should reduce gold loss in the plant.

#### CEO and Managing Director, John Kaminsky commented:

"The completed RC drilling was conducted on a range of areas, attempting to build knowledge in the diverse mineralised setting that occurs at Fifield. The company strategy continues to be to pursue the Sorpresa resource definition, discovery growth and economic potential in parallel with the regional discovery advancement.

"The Trench 31 area results demonstrate good continuity within the higher grade gold lenses in the oxide zone ( $0 \sim 60$ m). We have gained important insight, and the possibility of stacked gold lenses and shoots will be further tested.



Trench 31 recent drilling area

"The high grade shoots seem to occur in 3 discrete areas, with varying dips, where previous drilling had not provided this interpretation. The nett result is we now have additional understanding which may assist in identifying and defining this higher grade material both within the resource area and projected into un-drilled areas.

"The closer spaced and infill drilling continues to provide better understanding on the mineralisation orientation, structure and geology within Sorpresa. The knowledge being gained adds to the Company's capacity to seek further upside within the current Sorpresa resource for gold and silver. More locations are planned for drilling at Trench 31 and Roadside accordingly.

"Laboratory scale metallurgy was returned, with generally positive results for gravity, floatation and the equivalent of heap leach. These positive recoveries give a number of processing options and are a valuable basis for the key questions for the Company which are how many tonnes, ounces and at what grade can we grow in the potential economic areas at Sorpresa, to achieve a starting point for a potential mining project? There is still work to be done, but the recent metallurgy and high grade insights at Trench 31 certainly provide encouragement.

### New regional Activities

"From a discovery perspective, the Company continues to examine the potential to grow the Sorpresa style mineralisation with targets identified outside the known resource. RC drilling on magnetic and gravity features to the east of Trench 31intersected the mineralised Sorpresa stratigraphy, producing gold and silver values. Potential remains for extensions of the mineralisation to east, where it is likely better structural interplay with the host geology is needed.

"At Eclipse South an attempt was made to better understand the context of the chalcopyrite intersected there previously. A number of drill holes were placed, but were unable to reach the defined target area, due to the influence of a dominant north-south shear zone structure.

"Reasonable Au and further Cu anomalism were encountered, with the geology still under interpretation. The new drilling information provides additional insight into the large "Cu and Au smoke" seen on the Eclipse Trend-Yoe's areas, and in particular the previous hole Fi 0588 (which gave 4m @ 6.5% Cu and 2.30g/t Au). Further follow up is anticipated in an attempt to better understand the underlying context.

| Hole<br>(location)       | Main Intersection(s)                                                                                         | Including Intersection(s)                            |
|--------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Fi 0604<br>(Eclipse Sth) | 1m @ 0.94g/t Au from 47m<br>1m @ 1.02g/t Au from 96m<br>1m @ 3.33g/t Au from 143m <mark>&amp; 0.1% Cu</mark> |                                                      |
| Fi 0606<br>(Eclipse Sth) | 6m @ 0.56g/t Au from 23m<br>14m @ 0.48g/t Au from 70m                                                        | 1m @ 2.02g/t Au from 25m<br>1m @ 1.96g/t Au from 70m |
| Fi 0609<br>(Eclipse Sth) | 10m @ 0.26g/t Au from 13m<br>1m @ 0.54% Cu from 77m                                                          |                                                      |

An Extract Table of Recent RC Drilling Eclipse Trend

(See Figure 5, Table 2 for complete assay details, pages 10~16 this report)

### Overall summary of recent RC drilling at Sorpresa and Regionally

"The recent RC drilling was noteworthy on a range of fronts:

- ✓ High grade gold shoots are seen at Tr31 area, with the potential for additional discovery to the south
- ✓ In total, 36/50 holes drilled, achieved a gold result of > 0.2g/t for 1m across the programs
- ✓ The Eclipse South area has been extended along strike with a 300m zone of gold in auger encountered some 800m further south of previous auger results
- ✓ Gold and silver (up to 37/t) was encountered east of Tr31 at Sorpresa, indicating the system still continues east
- ✓ The drilling represented the completion of the funding from NSW "New Frontiers Drilling Grant" which provided a nett benefit of \$175,000 to the company in the last 12 months

| Area of Drilling         | Holes | Metres | Summary Comments                                                                                                                  |
|--------------------------|-------|--------|-----------------------------------------------------------------------------------------------------------------------------------|
| Sorpresa (Tr31)          | 28    | 1,142  | Better defined Au lens with 3 shoots emerging, coherent and at shallow depths                                                     |
| East Sorpresa            | 4     | 642    | Mineralised planes continues East, Au & Ag encountered                                                                            |
| Eclipse Trend (4 areas)  | 19    | 2,321  | Extension of Eclipse Trend with Au in auger 800m to the south, Au, Cu values elsewhere                                            |
| Yoe's Radiometric target | 1     | 200    | Whilst no result was achieved, the potential porphyry intrusive feature is only partly tested , still valid for pursuit of Au, Cu |

Summary Table of Recent RC Drilling

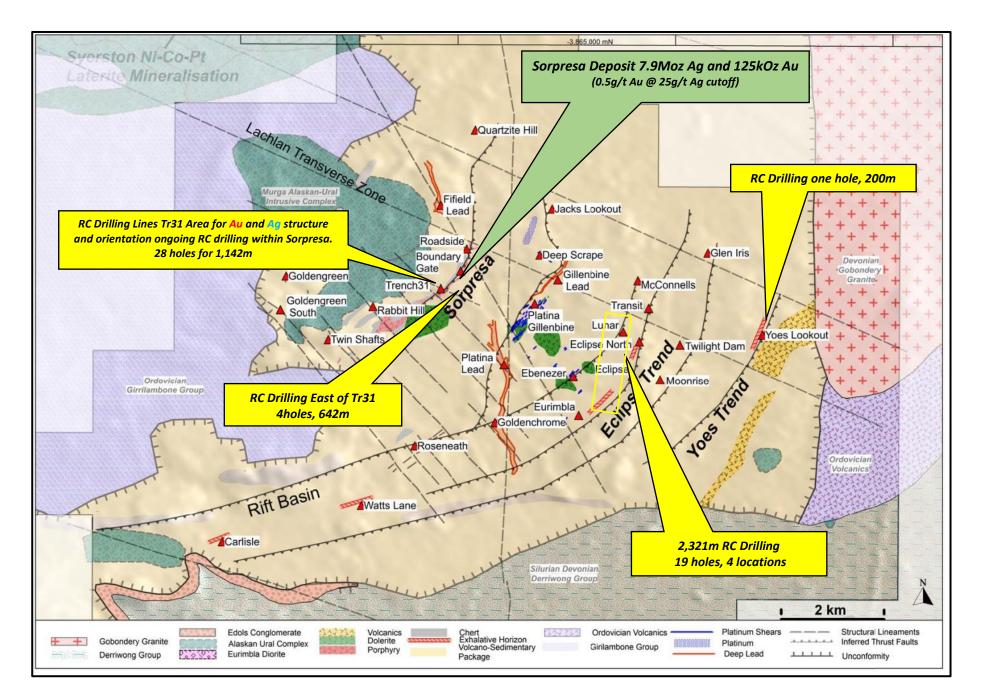
"The Company will continue with scoping soil and auger programs and selected RC drilling, looking to build on the results already developed within the 6km radius of the Sorpresa project area."

#### Sorpresa Discovery RC Drilling Opportunities

Currently the Sorpresa Deposit comprises 6.4Mt for 7.9Moz of silver and 125kOz of gold (at 0.5g/t Au & 25g/t Ag cutoff) as an Inferred and Indicated Mineral Resource, equating to approx. 250,000oz gold equivalent.

The Company believes that potential upside exists at Sorpresa by defining additional resources in under explored areas along strike to the south and at depth, down dip to the east and also in gap areas between mineralised domains.

- □ **High grades** that exist in yet to be defined areas, where previous drilling has been on too broad a scale, and has missed these high grade areas
- □ In addition to the well intersected fine disseminated mineralisation, there is an observed **coarse gold fraction** in places, and this is likely to provide further grade uplift in parts of Sorpresa
- **Discovery growth extension** possibilities remain in areas to the East, South and in the gaps within Sorpresa.


In addition to the results provided in this report, the Company has continued a broad spectrum of work and a brief update on these Company activities is provided below.

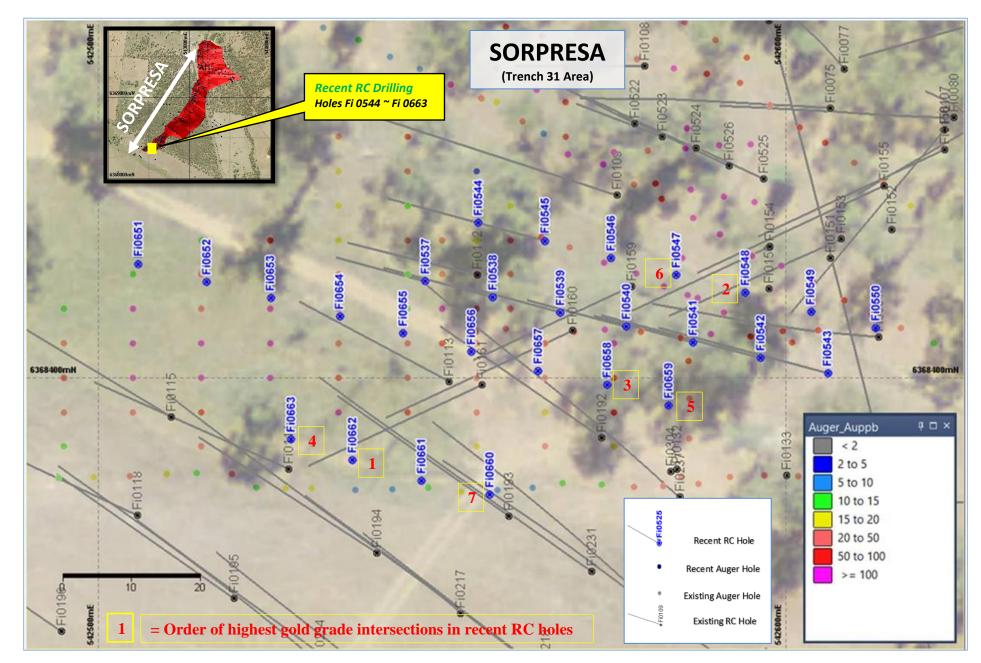
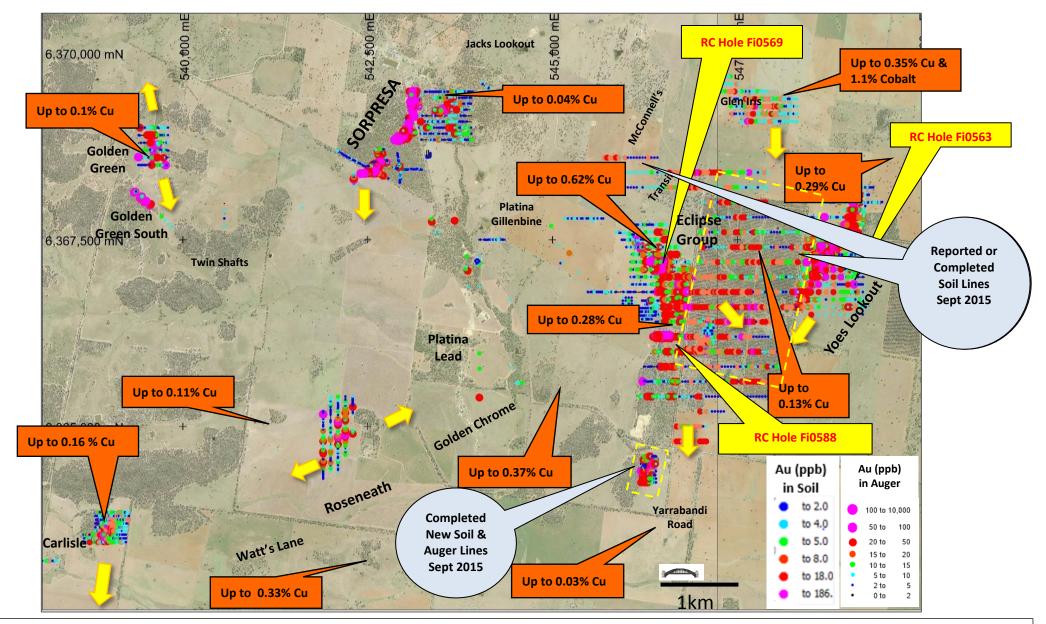
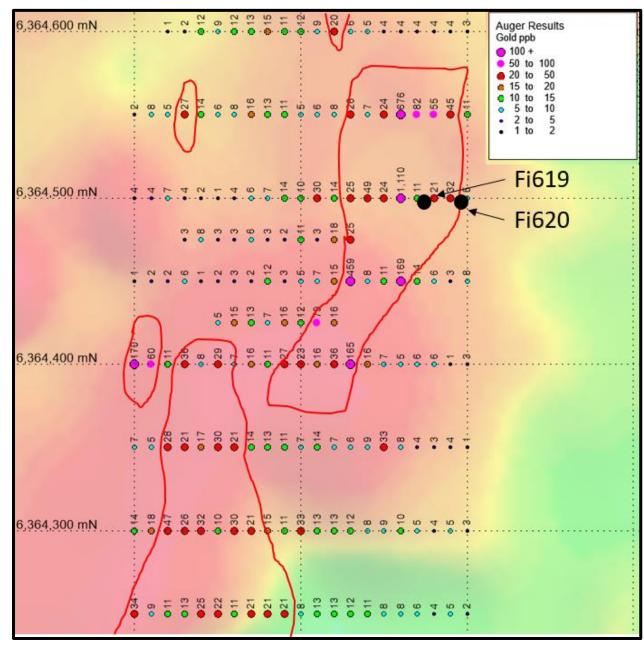
### A summary of other activities either completed or currently underway at Fifield include:

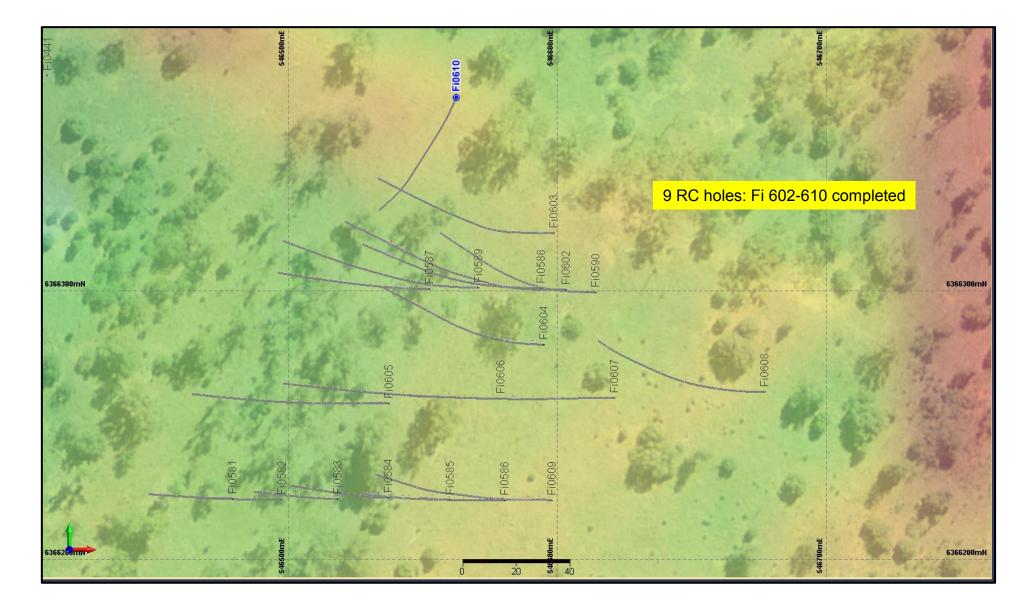
- ✓ Sampling (Soil and Auger drill) on extensions to the south of Eclipse Trend *completed, identification of gold anomalism in soil and first RC drilling conducted (Figure 4)*
- ✓ Sampling (Soil) between Eclipse and Yoes reported and analysed, *identification of new gold anomalism* (*Figure 3*)
- ✓ Soil sampling, mapping and rock chipping at Transit and Yoe's North prospects
- Examination of radiometric data and 10 new anomalies have been identified including potential porphyry targets
- ✓ Ongoing definition of high grade lens areas for Au/Ag at Sorpresa *RC drilling Underway Trench 31*
- ✓ Next stage of metallurgical testing within the Sorpresa resource, to assist economic studies –*Completed*

The Company intends to maintain manageable work programs that continue to advance the opportunities at Fifield, within the financial constraints currently facing the industry.

JOHN KAMINSKY CEO and Managing Director





Figure 2: Sorpresa Plan View, the location of the RC drill results at Trench 31 area. (Looking at Structural Controls and lens shapes on Gold and Silver)



*Figure 3:* Wider Sorpresa area Map, shows the underlying gold signature, with best Copper Rock Chips overlaid. RC drilling (May~July 2015) has confirmed Copper (Chalcopyrite)

The Eclipse Trend is in a structurally complex area which is associated with a strong geochemical corridor which extends from Eclipse South for 2.6km through the Eclipse North drilling area and is open along strike to the north and south. Significant high grade Cu and Au drill intersections in both areas has indicated the potential for ore grade mineralisation relatively close to surface, open down dip and along strike.





## Table 2: Assay Results from recent RC drilling at Sorpresa – Trench 31 Area Oxide

| Hole ID                    | Easting<br>(m GDA94)       | Northing<br>(m GDA94)         | Survey<br>Base    | RL<br>(mAHD)             | Dip<br>(°)        | GDA<br>Azimuth<br>(°)    | Depth<br>(m)   | Drilling<br>Type | Prospect                                         | From<br>(m)  | To<br>(m)     | Down<br>hole<br>Length<br>(m) | Au<br>(g/t) | Ag<br>(g/t)                                                                               |
|----------------------------|----------------------------|-------------------------------|-------------------|--------------------------|-------------------|--------------------------|----------------|------------------|--------------------------------------------------|--------------|---------------|-------------------------------|-------------|-------------------------------------------------------------------------------------------|
|                            |                            |                               |                   |                          |                   |                          |                |                  |                                                  |              |               |                               |             |                                                                                           |
| Fi0537                     | 542548                     | 6368414                       | GPS               | 292                      | -60               | 285                      | 27             | RC               | Trench 31                                        | NS           |               |                               |             | <u> </u>                                                                                  |
| Fi0538                     | 542557                     | 6368412                       | GPS               | 291                      | -60               | 285                      | 33             | RC               | Trench 31                                        | 5            | 6             | 1                             | 0.31        | <u> </u>                                                                                  |
|                            |                            |                               |                   |                          |                   |                          |                |                  |                                                  | 21           | 24            | 3                             | 1.12        |                                                                                           |
|                            |                            |                               |                   |                          |                   |                          |                |                  | incl.                                            | 21           | 23            | 2                             | 1.53        |                                                                                           |
| Fi0539                     | 542567                     | 6368410                       | GPS               | 291                      | -60               | 285                      | 33             | RC               | Trench 31                                        | 4            | 8             | 4                             | 0.35        | <u> </u>                                                                                  |
|                            |                            |                               |                   |                          |                   |                          |                |                  |                                                  |              |               |                               |             |                                                                                           |
| Fi0540                     | 542577                     | 6368407                       | GPS               | 291                      | -60               | 285                      | 30             | RC               | Trench 31                                        | 1            | 2             | 1                             | 0.20        |                                                                                           |
|                            |                            |                               |                   |                          |                   |                          |                |                  |                                                  | 16           | 17            | 1                             | 1.75        |                                                                                           |
|                            |                            |                               |                   |                          |                   |                          |                |                  |                                                  | 20           | 21            | 1                             | 2.25        | <u> </u>                                                                                  |
| Fi0541                     | 542587                     | 6368405                       | GPS               | 291                      | -60               | 285                      | 30             | RC               | Trench 31                                        | 0            | 1             | 1                             | 0.32        |                                                                                           |
| Fi0542                     | 542596                     | 6368403                       | GPS               | 291                      | -60               | 285                      | 48             | RC               | Trench 31                                        | 31           | 32            | 1                             | 0.26        | <u> </u>                                                                                  |
|                            | 0.2000                     |                               |                   |                          |                   |                          |                |                  |                                                  | 37           | 38            | 1                             | 0.20        |                                                                                           |
| 5:05 42                    | F 42COC                    | 6268401                       | CDC               | 201                      | 60                | 205                      | <b>F</b> 4     | DC               | Treach 21                                        | 0            | 1             | 1                             | 0.21        | <u> </u>                                                                                  |
| FI0543                     | 542606                     | 6368401                       | GPS               | 291                      | -60               | 285                      | 51             | RC               | I rench 31                                       | 39           | 40            | 1                             | 0.31        | <u> </u>                                                                                  |
|                            |                            |                               |                   |                          |                   |                          |                |                  |                                                  |              |               |                               |             |                                                                                           |
| Fi0544                     | 542555                     | 6368423                       | GPS               | 292                      | -60               | 285                      | 27             | RC               | Trench 31                                        | 9            | 10            | 1                             | 0.23        |                                                                                           |
|                            |                            |                               |                   |                          |                   |                          |                |                  |                                                  | 16           | 17            | 1                             | 0.20        |                                                                                           |
| Fi0543<br>Fi0543<br>Fi0544 | 542596<br>542606<br>542555 | 6368403<br>6368401<br>6368423 | GPS<br>GPS<br>GPS | 291<br>291<br>291<br>292 | -60<br>-60<br>-60 | 285<br>285<br>285<br>285 | 48<br>51<br>27 | RC<br>RC<br>RC   | Trench 31<br>Trench 31<br>Trench 31<br>Trench 31 | 0<br>39<br>9 | 1<br>40<br>10 |                               | 1<br>1<br>1 | 1         0.20           1         0.31           1         0.23           1         0.23 |

| Hole ID | Easting<br>(m GDA94) | Northing<br>(m GDA94) | Survey<br>Base | RL<br>(mAHD) | Dip<br>(°) | GDA<br>Azimuth<br>(°) | Depth<br>(m) | Drilling<br>Type | Prospect  | From<br>(m) | To<br>(m) | Down<br>hole<br>Length<br>(m) | Au<br>(g/t) | Ag<br>(g/t) |
|---------|----------------------|-----------------------|----------------|--------------|------------|-----------------------|--------------|------------------|-----------|-------------|-----------|-------------------------------|-------------|-------------|
|         |                      |                       |                |              |            |                       |              |                  |           |             |           |                               |             | <u> </u>    |
| Fi0545  | 542565               | 6368420               | GPS            | 292          | -60        | 285                   | 24           | RC               | Trench 31 | NS          |           |                               |             |             |
| Fi0546  | 542575               | 6368417               | GPS            | 291          | -90        | 0                     | 39           | RC               | Trench 31 | 0           | 2         | 2                             | 1.22        |             |
|         |                      |                       |                |              |            |                       |              |                  |           | 10          | 11        | 1                             | 0.22        |             |
|         |                      |                       |                |              |            |                       |              |                  |           | 15          | 16        | 1                             | 0.16        |             |
|         |                      |                       |                |              |            |                       |              |                  |           |             |           |                               |             | ļļ          |
| Fi0547  | 542584               | 6368415               | GPS            | 291          | -90        | 0                     | 42           | RC               | Trench 31 | 0           | 2         | 2                             | 0.20        |             |
|         |                      |                       |                |              |            |                       |              |                  |           | 15          | 18        | 3                             | 8.08        | 11          |
|         |                      |                       |                |              |            |                       |              |                  | incl.     | 15          | 17        | 2                             | 11.25       | 14          |
|         |                      |                       |                |              |            |                       |              |                  |           | 18          | 24        | 6                             | 0.33        | 1           |
| Fi0548  | 542594               | 6368412               | GPS            | 291          | -90        | 0                     | 52           | RC               | Trench 31 | 0           | 2         | 2                             | 0.25        |             |
|         |                      |                       |                |              |            |                       |              |                  |           | 39          | 41        | 2                             | 28.65       | 53          |
|         |                      |                       |                |              |            |                       |              |                  | incl.     | 39          | 40        | 1                             | 53.30       | 74          |
|         |                      |                       |                |              |            |                       |              |                  |           | 41          | 42        | 1                             | 0.30        | 4           |
|         |                      |                       |                |              |            |                       |              |                  |           |             |           |                               |             |             |
| Fi0549  | 542604               | 6368410               | GPS            | 291          | -90        | 0                     | 51           | RC               | Trench 31 | 0           | 1         | 1                             | 0.28        | 1           |
|         |                      |                       |                |              |            |                       |              |                  |           | 1           | 2         | 1                             | 1.00        |             |
|         |                      |                       |                |              |            |                       |              |                  |           | 43          | 45        | 2                             | 0.28        |             |
| Fi0550  | 542613               | 6368407               | GPS            | 291          | -90        | 0                     | 55           | RC               | Trench 31 | NS          |           |                               |             |             |
|         |                      |                       |                |              |            |                       |              |                  |           |             |           |                               |             |             |

## Table 2: Assay Results from recent RC drilling at Sorpresa – Trench 31 Area Oxide

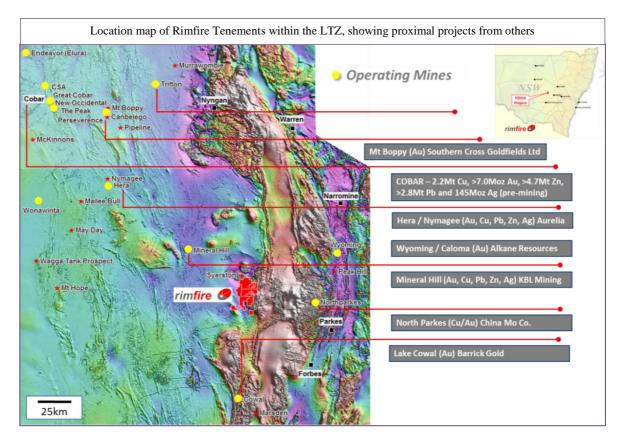
| Hole ID | Easting<br>(m GDA94) | Northing<br>(m GDA94) | Survey<br>Base | RL<br>(mAHD) | Dip<br>(°) | GDA<br>Azimuth<br>(°) | Depth<br>(m) | Drilling<br>Type | Prospect  | From<br>(m)       | To<br>(m)  | Down<br>hole<br>Length<br>(m) | Au<br>(g/t)   | Ag<br>(g/t)  |
|---------|----------------------|-----------------------|----------------|--------------|------------|-----------------------|--------------|------------------|-----------|-------------------|------------|-------------------------------|---------------|--------------|
| Fi0651  | 542506               | 6368417               | GPS            | 291          | -90        | 0                     | 36           | RC               | Trench 31 | 23                | 24         | 1                             | 0.4           | 1.1          |
|         |                      |                       |                |              |            |                       |              |                  |           | 26                | 28         | 2                             | 0.44          | 1.5          |
| Fi0652  | 542516               | 6368414               | GPS            | 292          | -90        | 0                     | 30           | RC               | Trench 31 | 27                | 28         | 1                             | 0.21          | 0.4          |
| Fi0653  | 542525               | 6368412               | GPS            | 291          | -90        | 0                     | 23           | RC               | Trench 31 | 7                 | 8          | 1                             | 0.27          | 0.5          |
|         |                      |                       |                |              |            |                       |              |                  |           | 8                 | 9          | 1                             | 1.14          | 0.5          |
| Fi0654  | 542535               | 6368409               | GPS            | 292          | -90        | 0                     | 36           | RC               | Trench 31 | 16                | 18         | 2                             | 0.35          | 0.8          |
| Fi0655  | 542544               | 6368406               | GPS            | 291          | -90        | 0                     | 36           | RC               | Trench 31 | 6                 | 8          | 2                             | 0.37          | 0.8          |
|         |                      |                       |                |              |            |                       |              |                  |           | 21                | 26         | 5                             | 0.27          | 1.1          |
| Fi0656  | 542554               | 6368404               | GPS            | 291          | -90        | 0                     | 45           | RC               | Trench 31 | 10                | 12         | 2                             | 0.18          | 1.1          |
|         |                      |                       |                |              |            |                       |              |                  |           | 17                | 25         | 8                             | 0.18          | 1.1          |
|         |                      |                       |                |              |            |                       |              |                  |           | 28                | 30         | 2                             | 3.17          | 2.4          |
|         |                      |                       |                |              |            |                       |              |                  | inc       | . <mark>29</mark> | 30         | 1                             | 5.99          | 2.5          |
| Fi0657  | 542564               | 6368401               | GPS            | 291          | -90        | 0                     | 61           | RC               | Trench 31 | 22                | 27         | 5                             | 0.19          | 1.4          |
|         |                      |                       |                |              |            |                       |              |                  |           | 39                | 40         | 1                             | 0.67          | 1.2          |
| Fi0658  | 542574               | 6368399               | GPS            | 291          | -90        | 0                     | 57           | RC               | Trench 31 | 37                | 39         | 2                             | 26.94         | 35.8         |
|         |                      |                       | 0.0            |              |            |                       |              |                  | inc       |                   | 38         | 1                             | 50            | 54.6         |
| FIOCEO  | E40500               | 6268206               | CDC            | 201          | 00         | 0                     | <b>F7</b>    |                  | Trench 31 | 47                | <b>F</b> 2 |                               | 0 70          | 21.0         |
| Fi0659  | 542583               | 6368396               | GPS            | 291          | -90        | 0                     | 57           | RC               | inc       | 47<br>. 50        | 52<br>51   | 5<br>1                        | 8.73<br>33.70 | 21.9<br>31.2 |
|         |                      |                       |                |              |            |                       |              |                  | inc       |                   | 52         | 1                             | 5.99          | 33.8         |
|         |                      |                       |                |              |            |                       |              |                  | an        |                   | 54         | -                             | 0.85          | 16.9         |
|         |                      |                       |                |              |            |                       |              |                  |           |                   |            |                               |               |              |

## Table 2: Assay Results from recent RC drilling at Sorpresa – Trench 31 Area Oxide

| Hole ID | Easting<br>(m GDA94) | Northing<br>(m GDA94) | Survey<br>Base | RL<br>(mAHD) | Dip<br>(°) | GDA<br>Azimuth<br>(°) | Depth<br>(m) | Drilling<br>Type | Prospect  | From<br>(m) | To<br>(m) | Down<br>hole<br>Length<br>(m) | Au<br>(g/t) | Ag<br>(g/t) |
|---------|----------------------|-----------------------|----------------|--------------|------------|-----------------------|--------------|------------------|-----------|-------------|-----------|-------------------------------|-------------|-------------|
| Fi0660  | 542557               | 6368383               | GPS            | 291          | -90        | 0                     | 70           | RC               | Trench 31 | 54          | 57        | 3                             | 3.92        | 47.0        |
|         |                      |                       |                |              |            |                       |              |                  | inc       | . <b>54</b> | 55        | 1                             | 5.52        | 73.0        |
|         |                      |                       |                |              |            |                       |              |                  | inc       | . <b>55</b> | 56        | 1                             | 4.22        | 52.5        |
|         |                      |                       |                |              |            |                       |              |                  | an        | 61          | 64        | 3                             | 0.32        | 2.8         |
|         |                      |                       |                |              |            |                       |              |                  |           |             |           |                               |             |             |
| Fi0661  | 542547               | 6368385               | GPS            | 291          | -90        | 0                     | 20           | RC               | Trench 31 | 8           | 9         | 1                             | 0.1         | 0.6         |
|         |                      |                       |                |              |            | Drilling P            | roblems      |                  |           |             |           |                               |             |             |
| Fi0662  | 542537               | 6368388               | GPS            | 291          | -90        | 0                     | 63           | RC               | Trench 31 | 20          | 23        | 3                             | 20.42       | 26.0        |
|         |                      |                       |                |              |            |                       |              |                  | inc       |             | 22        | 1                             | 39.60       | 58.4        |
|         |                      |                       |                |              |            |                       |              |                  | and       |             | 36        | 1                             | 5.47        | 53.0        |
|         |                      |                       |                |              |            |                       |              |                  | an        |             | 45        | 7                             | 0.50        | 5.2         |
|         |                      |                       |                |              |            |                       |              |                  | inc       |             | 41        | 1                             | 1.55        | 4.0         |
|         |                      |                       |                |              |            |                       |              |                  | and       |             | 49        | 4                             | 5.34        | 18.2        |
|         |                      |                       |                |              |            |                       |              |                  | inc       |             | 47        | 1                             | 16.75       | 26.6        |
|         |                      |                       |                |              |            |                       |              |                  | an        | 60          | 62        | 2                             | 0.49        | 6.8         |
|         |                      |                       |                |              |            |                       |              |                  |           |             |           |                               |             |             |
| Fi0663  | 542528               | 6368391               | GPS            | 291          | -90        | 0                     | 59           | RC               | Trench 31 | 18          | 21        | 3                             | 0.71        | 2.0         |
|         |                      |                       |                |              |            |                       |              |                  | and       |             | 31        | 10                            | 2.29        | 11.8        |
|         |                      |                       |                |              |            |                       |              |                  | inc       |             | 22        | 1                             | 7.96        | 66.1        |
|         |                      |                       |                |              |            |                       |              |                  | inc       |             | 24        | 2                             | 3.23        | 12.4        |
|         |                      |                       |                |              |            |                       |              |                  | inc       |             | 31        | 1                             | 3.15        | 4.2         |
|         |                      |                       |                |              |            |                       |              |                  | an        |             | 35        | 4                             | 0.38        | 4.4         |
|         |                      |                       |                |              |            |                       |              |                  | and       |             | 42        | 7                             | 3.37        | 14.1        |
|         |                      |                       |                |              |            |                       |              |                  | inc       |             | 37        | 1                             | 11.55       | 24.3        |
|         |                      |                       |                |              |            |                       |              |                  |           | 45          | 46        | 1                             | 0.30        | 9.4         |
|         |                      |                       |                |              |            |                       |              |                  |           | 56          | 58        | 2                             | 0.30        | 2.4         |
| FIGGE   | E 40540              | 6260202               | 600            | 201          | 00         |                       | _            |                  | Turn 1 24 | -           |           |                               | 0.00        |             |
| FIU664  | 542518               | 6368393               | GPS            | 291          | -90        |                       |              | RC               | Trench 31 | 0           | 1         | 1                             | 0.99        | 0.4         |
| Fi0664  | 542518               | 6368393               | GPS            | 291          | -90        | 0<br>Drilling P       | 7<br>roblems | RC               | Trench 31 | 56<br>0     | 58<br>1   | 2                             |             | 0.30        |

| Hole ID | Easting<br>(m GDA94) | Northing<br>(m GDA94) | Survey<br>Base | RL<br>(mAHD) | Dip<br>(°) | GDA<br>Azimuth<br>(°) | Depth<br>(m) | Drilling<br>Type | Prospect      | From<br>(m) | To<br>(m) | Down<br>hole<br>Length<br>(m) | Au<br>(g/t) | Ag<br>(g/t) | Cu (%) |
|---------|----------------------|-----------------------|----------------|--------------|------------|-----------------------|--------------|------------------|---------------|-------------|-----------|-------------------------------|-------------|-------------|--------|
| 5:0522  | F 46 460             | 6266005               | DCDC           | 202          | 60         | 270                   | 60           | D.C.             | Calinaa Marsh | 44*         | 40        |                               | 0.10        |             |        |
| Fi0532  | 546460               | 6366995               | DGPS           | 293          | -60        | 270                   | 60           | RC               | Eclipse North | 44*         | 48        | 4                             | 0.10        |             |        |
| Fi0533  | 546430               | 6366997               | DGPS           | 293          | -60        | 270                   | 66           | RC               | Eclipse North | NS          |           |                               |             |             |        |
| Fi0534  | 546011               | 6368226               | GPS            | 289          | -90        | 0                     | 57           | RC               | Lunar North   | 16*         | 20        | 4                             | 0.51        |             |        |
| Fi0535  | 546429               | 6366801               | DGPS           | 295          | -60        | 270                   | 60           | RC               | Eclipse North | NS          |           |                               |             |             |        |
| Fi0536  | 546460               | 6366801               | DGPS           | 296          | -60        | 270                   | 60           | RC               | Eclipse North | NS          |           |                               |             |             |        |
| Fi0602  | 546603               | 6366300               | DGPS           | 303          | -60        | 270                   | 202          | RC               | Eclipse South | 30          | 31        | 1                             | 0.24        |             |        |
| 110002  | 540005               | 0500500               | 0010           | 505          | 00         | 270                   | 202          | ne               | Lenpse south  | 96          | 97        | 1                             | 0.65        |             |        |
|         |                      |                       |                |              |            |                       |              |                  |               | 136         | 138       | 2                             | 0.27        |             |        |
|         |                      |                       |                |              |            |                       |              |                  |               | 153         | 157       | 4                             | 0.46        |             | 0.14   |
|         |                      |                       |                |              |            |                       |              |                  | incl.         | 155         | 156       | 1                             | 0.94        |             | 0.24   |
| Fi0603  | 546599               | 6366321               | DGPS           | 304          | -60        | 270                   | 154          | RC               | Eclipse South | 45          | 48        | 3                             | 0.48        |             |        |
|         |                      |                       |                |              |            |                       |              |                  | incl.         | 47          | 48        | 1                             | 0.95        |             |        |
|         |                      |                       |                |              |            |                       |              |                  |               | 125         | 130       | 5                             | 0.04        |             | 0.12   |
| Fi0604  | 546595               | 6366280               | GPS            | 306          | -60        | 270                   | 154          | RC               | Eclipse South | 5           | 6         | 1                             | 0.54        |             | 0.02   |
|         |                      |                       |                |              |            |                       |              |                  |               | 23          | 27        | 4                             | 0.30        |             |        |
|         |                      |                       |                |              |            |                       |              |                  |               | 24          | 25        | 1                             | 0.94        |             | 0.02   |
|         |                      |                       |                |              |            |                       |              |                  |               | 90          | 91        | 1                             | 0.48        |             |        |
|         |                      |                       |                |              |            |                       |              |                  |               | 95          | 97        | 2                             | 0.64        |             |        |
|         |                      |                       |                |              |            |                       |              |                  | incl.         | 96          | 97        | 1                             | 1.02        |             |        |
|         |                      |                       |                |              |            |                       |              |                  |               | 102         | 104       | 2                             | 0.04        |             | 0.12   |
|         |                      |                       |                |              |            |                       |              |                  |               | 143         | 144       | 1                             | 3.33        |             | 0.10   |
| Fi0605  | 546537               | 6366258               | DGPS           | 308          | -60        | 270                   | 130          | RC               | Eclipse South | 0           | 2         | 2                             | 0.80        |             |        |
|         |                      |                       |                |              |            |                       |              |                  |               | 7           | 8         | 1                             | 0.22        |             |        |
|         |                      |                       |                |              |            |                       |              |                  |               | 11          | 12        | 1                             | 0.36        |             |        |
|         |                      |                       |                |              |            |                       |              |                  |               | 21          | 22        | 1                             | 0.60        |             |        |
|         |                      |                       |                |              |            |                       |              |                  |               | 27          | 28        | 1                             | 0.30        |             |        |
|         |                      |                       |                |              |            |                       |              |                  |               | 36          | 38        | 2                             | 0.27        |             |        |
|         |                      |                       |                |              |            |                       |              |                  |               | 54          | 55        | 1                             | 0.23        |             |        |
|         |                      |                       |                |              |            |                       |              |                  |               | 57          | 63        | 6                             | 0.32        |             |        |
|         |                      |                       |                |              |            |                       |              |                  |               |             |           |                               |             |             |        |

## Table 2: Assay Results from recent RC drilling at Eclipse Trend


| Hole ID | Easting<br>(m GDA94) | Northing<br>(m GDA94) | Survey<br>Base | RL<br>(mAHD) | Dip<br>(°) | GDA<br>Azimuth<br>(°) | Depth<br>(m) | Drilling<br>Type | Prospect          | From<br>(m) | To<br>(m) | Down<br>hole<br>Length<br>(m) | Au<br>(g/t) | Ag<br>(g/t) | Cu (%) |
|---------|----------------------|-----------------------|----------------|--------------|------------|-----------------------|--------------|------------------|-------------------|-------------|-----------|-------------------------------|-------------|-------------|--------|
| Fi0606  | 546579               | 6366260               | DGPS           | 304          | -60        | 270                   | 154          | RC               | Eclipse South     | 10          | 11        | 1                             | 0.42        |             |        |
| FIUOUO  | 540579               | 0500200               | DGPS           | 504          | -00        | 270                   | 154          | RC .             | Eclipse South     | 23          | 29        | 6                             | 0.42        |             |        |
|         |                      |                       |                |              |            |                       |              |                  | incl.             | 25<br>25    | 29        | 1                             | <b>2.02</b> |             |        |
|         |                      |                       |                |              |            |                       |              |                  | inci              | 42          | 48        | 6                             | 0.21        |             |        |
|         |                      |                       |                |              |            |                       |              |                  |                   | 52          | 53        | 1                             | 0.20        |             |        |
|         |                      |                       |                |              |            |                       |              |                  |                   | 55          | 63        | 8                             | 0.22        |             |        |
|         |                      |                       |                |              |            |                       |              |                  |                   | 66          | 67        | 1                             | 0.48        |             |        |
|         |                      |                       |                |              |            |                       |              |                  |                   | 70          | 84        | 14                            | 0.48        |             |        |
|         |                      |                       |                |              |            |                       |              |                  | incl.             | 70          | 71        | 1                             | 1.96        |             |        |
|         |                      |                       |                |              |            |                       |              |                  |                   |             |           |                               |             |             |        |
| Fi0607  | 546621               | 6366260               | DGPS           | 301          | -60        | 270                   | 160          | RC               | Eclipse South     | 43          | 44        | 1                             | 1.01        |             |        |
|         |                      |                       |                |              |            |                       |              |                  |                   | 59          | 60        | 1                             | 0.47        |             |        |
|         |                      |                       |                |              |            |                       |              |                  |                   | 74          | 76        | 2                             | 0.46        |             | 0.10   |
|         |                      |                       |                |              |            |                       |              |                  |                   | 110         | 112       | 2                             | 0.37        |             |        |
|         |                      |                       |                |              |            |                       |              |                  |                   |             |           |                               |             |             |        |
| Fi0608  | 546677               | 6366262               | DGPS           | 298          | -60        | 270                   | 154          | RC               | Eclipse South     | NS          |           |                               |             |             |        |
|         |                      |                       |                |              |            |                       |              |                  |                   |             |           | _                             |             |             |        |
| Fi0609  | 546598               | 6366222               | DGPS           | 302          | -60        | 270                   | 172          | RC               | Eclipse South     | 13          | 23        | 10                            | 0.26        |             |        |
|         |                      |                       |                |              |            |                       |              |                  | incl.             | 18          | 20        | 2                             | 0.61        |             |        |
|         |                      |                       |                |              |            |                       |              |                  |                   | 27          | 30        | 3                             | 0.17        |             |        |
|         |                      |                       |                |              |            |                       |              |                  |                   | 77          | 78        | 1                             | 0.02        |             | 0.54   |
|         |                      |                       |                |              |            |                       |              |                  |                   | 122         | 123       | 1                             | 0.03        |             | 0.13   |
| 5:0640  | F 4 6 F 6 2          | 6266272               | DODO           | 200          | 60         | 202                   | 1.40         |                  | Estimation of the | 120         | 120       |                               | 0.42        |             | 0.11   |
| Fi0610  | 546562               | 6366372               | DGPS           | 308          | -60        | 202                   | 148          | RC               | Eclipse South     | 128         | 129       | 1                             | 0.12        |             | 0.11   |
| F:0C11  | 546530               | 6267090               | GPS            | 295          | -58        | 270                   | 184          | DC               | Colinco North     | 12          | 15        | 2                             | 0.22        |             | 0.00   |
| Fi0611  | 540530               | 6367080               | GPS            | 295          | -58        | 270                   | 184          | RC               | Eclipse North     | 13<br>36*   | 15<br>40  | 2                             | 0.22        |             | 0.09   |
|         |                      |                       |                |              |            |                       |              |                  |                   | 48*         | 52        | 4                             | 1.21        |             |        |
|         |                      |                       |                |              |            |                       |              |                  |                   | 40          | 52        | 4                             | 1.21        |             |        |
| Fi0612  | 546590               | 6367070               | GPS            | 296          | -90        | 270                   | 148          | RC               | Eclipse North     | 159         | 161       | 2                             | 0.34        |             | 0.12   |
| .10012  | 510000               | 0007070               | 0.5            | 250          | 50         | 270                   | 110          |                  |                   | 133         | 101       |                               | 0.34        |             | 0.12   |
| Fi0613  | 546590               | 6367220               | GPS            | 291          | -60        | 270                   | 148          | RC               | Eclipse North     | 97          | 101       | 4                             | 0.22        |             | 0.24   |
|         |                      |                       |                |              |            |                       |              | -                | - F               |             |           |                               |             |             |        |
| Fi0614  | 548770               | 6366940               | GPS            | 279          | -90        | 0                     | 200          | RC               | Yoe's             | NS          | 1         |                               |             |             |        |
|         |                      |                       |                |              |            |                       |              |                  |                   |             |           |                               |             |             |        |

| Hole ID | Easting<br>(m GDA94) | Northing<br>(m GDA94) | Survey<br>Base | RL<br>(mAHD) | Dip<br>(°) | GDA<br>Azimuth<br>(°) | Depth<br>(m) | Drilling<br>Type | Prospect               | From<br>(m) | To<br>(m) | Down<br>hole<br>Length<br>(m) | Au<br>(g/t) | Ag<br>(g/t) | Cu (%) |
|---------|----------------------|-----------------------|----------------|--------------|------------|-----------------------|--------------|------------------|------------------------|-------------|-----------|-------------------------------|-------------|-------------|--------|
|         |                      |                       |                |              |            |                       |              |                  |                        |             |           |                               |             |             |        |
| Fi0615  | 542941               | 6368444               | GPS            | 289          | -90        | 0                     | 144          | RC               | East Sorpresa          | 112         | 114       | 2                             | 0.24        | 35          |        |
|         |                      |                       |                |              |            |                       |              |                  |                        | 132         | 136       | 4                             | 0.18        |             |        |
|         |                      |                       |                |              |            |                       |              |                  |                        |             |           |                               |             |             |        |
| Fi0616  | 543095               | 6368453               | GPS            | 286          | -90        | 0                     | 178          | RC               | East Sorpresa          | NS          |           |                               |             |             |        |
|         |                      |                       |                |              |            |                       |              |                  |                        |             |           |                               |             |             |        |
| Fi0617  | 542928               | 6368598               | GPS            | 289          | -90        | 0                     | 160          | RC               | East Sorpresa          | 68          | 69        | 1                             | 0.55        | 37          |        |
|         |                      |                       |                |              |            |                       |              |                  |                        | 93*         | 97        | 4                             | 0.31        |             |        |
|         |                      |                       |                |              |            |                       |              |                  |                        |             |           |                               |             |             |        |
| Fi0618  | 542830               | 6368284               | GPS            | 287          | -90        | 0                     | 160          | RC               | East Sorpresa          | NS          |           |                               |             |             |        |
|         |                      |                       |                |              |            |                       |              |                  | ·                      |             |           |                               |             |             |        |
| Fi0619  | 546370               | 6364500               | GPS            | 271          | -60        | 270                   | 40           | RC               | Eclipse South Extended | 28          | 32        | 4                             | 0.36        |             |        |
|         |                      |                       |                |              |            |                       |              |                  | · ·                    |             |           |                               |             |             |        |
| Fi0620  | 546390               | 6364500               | GPS            | 271          | -60        | 270                   | 70           | RC               | Eclipse South Extended | NS          |           |                               |             |             |        |
|         |                      |                       |                |              |            |                       |              |                  | · ·                    |             |           |                               |             |             |        |

## ABOUT RIMFIRE PACIFIC MINING AND COMPETENT PERSON DECLARATION

Rimfire Pacific Mining is an ASX listed (code: RIM) resources exploration company that has its major emphasis focused at Fifield in central NSW, located within the Lachlan Transverse Zone (LTZ).

In 2010 the Company delivered a greenfields gold and silver discovery, named "Sorpresa", in the Fifield district. Subsequent exploration has provided evidence that the "Wider Sorpresa Area" is now considered a significant gold mineralised system of some promise. More recently a copper signature has been established to the East. The gold is predominantly native gold at Sorpresa.



The best gold and silver intersections achieved from the period mid-2012 to the current date on the **Sorpresa** Project area with locations shown include (*note Table 4: Dates and Hyperlinks for previously referred to results in this report*):

| Trench 31                |
|--------------------------|
| Roadside                 |
| Roadside                 |
| Roadside North           |
| Boundary Gate East (BGE) |
| Roadside                 |
| Join Up                  |
| Roadside                 |
|                          |

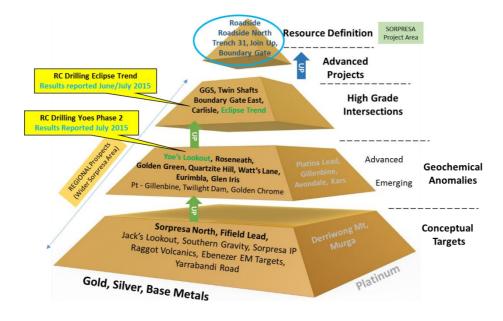
The current main Sorpresa Strike line containing gold and silver mineralisation is approximately 1.5km in length and is at various stages of further discovery extension drilling.

The Company announced a JORC 2012 Compliant Inferred & Indicated Maiden resource for Sorpresa in December 2014, which comprises 6.4Mt for 7.9Moz of silver and 125kOz of gold (at 0.5g/t Au & 25g/t Ag cutoff).

The Company has now established multiple project areas of importance involving hard rock Gold (Au), Silver (Ag), Copper (Cu) and Platinum (Pt) within a 6km radius of the Sorpresa discovery covering an extensive prospective 35km<sup>2</sup> area at Fifield, which is part of the contiguous 313km<sup>2</sup> tenement position held.

The latest presentations on the Company are at hyperlinks:

### <u>Rimfire Exploration Presentation - AGM 14 November 2014</u> <u>Exploration Industry Presentation and Rimfire Benchmarking - AGM 14 November 2014</u>


### NSW Resources Investment Conference 27-28th July 2015 Sydney

**A 3D Exploration Model,** as at May 2014, depicting gold mineralisation at Sorpresa with a description of the RC drill program goals at that time is available as a *video by hyperlink: Click Here.* 

## Regional Prospects within 6km Radius of Sorpresa Project Area at Fifield

Prioritized current prospects and targets within 6kms of Sorpresa are being systematically assessed. Rimfire interprets a rift basin setting at Fifield, Back Arc to the World Class Macquarie Arc, and traversed by the crustal scale Lachlan Transverse Zone (LTZ) and cross cut by other major crustal structures, which is host to multiple styles of significant mineralisation, with combined multimillion ounce gold equivalent potential. To date more than **30 targets** are revealed at Fifield.

The prospect pyramid below ranks these prospects which are grouped into 7 manageable "Target Domains", for gold and base metals, in terms of their logistical, spatial, deposit style and exploration stage;



Rimfire Prospect Pyramid illustrated at increasing stages of advancement from Conceptual targets, Emerging and Advanced Geochemical Anomalies, Prospects with High Grade intersections, and Advanced Targets, and a Resource at Sorpresa.

- 1. Sorpresa (Carbonate Base Metal Epithermal Au/Ag) Roadside North, Roadside, Original Sorpresa
- 2. Sorpresa (Carbonate Base Metal Epithermal Au) Join-Up, Boundary Gate, Boundary Gate East, Trench 31
- **3.** Eclipse Trend (Au-Copper, VMS / Epithermal) McConnell's, Transit, Eclipse North, Eclipse, Eurimbla, Golden Chrome, Roseneath, Watt's Lane, Carlisle.
- 4. Yoes Lookout (Skarn style and Structurally controlled Greenstone and Sediment hosted Au, possible Porpyhry Cu-Au target style)
- 5. Orogenics (Structurally controlled Greenstone and Sediment hosted Au)- Golden Green, Golden Green South, Twin Shafts, Rabbit Hill, Golden Green East.
- 6. Sorpresa Extensions Sorpresa North, Quartzite Hill, Fifield Lead, Southern Gravity, Red Mist
- 7. Conceptual Jack's Lookout, Gravity Gradient, Raggatt Volcanics, Glen Iris,

Work programs are at various stages of development on the prospects.

## **Table 3: Ranked Prospect Portfolio at Fifield NSW**

| Table o               | Table of Comparison of more Advanced Prospects within 6km Radius of Sorpresa Projects |                        |                         |                   |                                                 |      |                                      |                      |  |  |  |  |
|-----------------------|---------------------------------------------------------------------------------------|------------------------|-------------------------|-------------------|-------------------------------------------------|------|--------------------------------------|----------------------|--|--|--|--|
| Location              | Rock Chip<br>g/t Au                                                                   | Typical<br>Soil ppb Au | Typical Auger<br>ppb Au | Anomaly<br>Length | RC Drill<br>(best to date)                      | Open | Other                                | Historic<br>Workings |  |  |  |  |
| Sorpresa<br>Resource  | 8.8                                                                                   | 10~50                  | 20~1,000                | 1.5km             | 14 @ 24.4 g/t Au<br><mark>26m @155g/t Ag</mark> | yes  | IP/Gravity                           | Minor                |  |  |  |  |
| Yoes Lookout          | 3.4                                                                                   | 10~300                 | 20~1,000                | 1.7km             | Au, <mark>Cu</mark> anomalous                   | yes  | Magnetic<br>Feature, <mark>Cu</mark> | No                   |  |  |  |  |
| Eclipse Trend         | 18.7                                                                                  | N/A                    | 20~700                  | 2.2km             | <b>4m @ 6.5% Cu</b><br>4m @ 2.3g/t Au           | yes  | Ag, <mark>Cu</mark>                  | Minor                |  |  |  |  |
| Golden Green<br>Group | 8.1                                                                                   | N/A                    | 10~100                  | 0.5km             | 2m @ 9.11g/tAu                                  | yes  | Mafic host?                          | Yes                  |  |  |  |  |
| Roseneath             | 3.7                                                                                   | 8~300                  | 15~80                   | 0.8km             | N/A                                             | yes  | Sorpresa<br>Style?                   | No                   |  |  |  |  |
| Carlisle              | 23.0                                                                                  | 9~50                   | N/A                     | 0.35km            | 7m @ 1.47g/t Au                                 | yes  | Magnetic<br>Feature                  | Minor                |  |  |  |  |

## **Company Strategy**

The Company has committed to pursue a *prospect portfolio strategy* of developing the regional prospects at Fifield to suitable stages, in parallel with the Sorpresa project area to achieve outcomes as follows:

- Enhance and highlight the Fifield district's appeal to deliver more discoveries within 6km radius of Sorpresa
- □ Metals being pursued include Gold, Silver, Copper and Platinum
- Ensure the Company has the opportunity to make the best discoveries possible in its prospect portfolio
- Continue discovery growth at Sorpresa, looking for important contributions in the next phases of drilling
- Grow the maiden resource at Sorpresa (23 Dec 2014), currently published as inferred and indicated comprising **6.4Mt for 7.9Moz of silver and 125kOz of gold (at 0.5g/t Au & 25g/t Ag cutoff)**
- Examine economic potential, as appropriate to the stage of the project area

### **Competent Persons Declarations**

The information in the report to which this statement is attached that relates to Exploration and Resource Results is based on information reviewed and compiled by Colin Plumridge who is deemed to be a Competent Person and is a Member of The Australasian Institute of Mining and Metallurgy.

*Mr* Plumridge has over 45 years' experience in the mineral and mining industry. *Mr* Plumridge is employed by Plumridge & Associates Pty. Ltd. and is a consulting geologist to the Company. Colin Plumridge has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Colin Plumridge has previously consented to the inclusion of the matters based on the information in the form and context in which it appears.

#### Historic information and previously published material under 2004 JORC standard that is referenced in this report:

The information provided in "About Rimfire Pacific Mining" is extracted from the reports entitled and listed in the table below created on the dates shown and is available to view additionally on the Company Website at hyperlink: <u>ASX</u> <u>Announcements</u>. The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements.

In addition, the Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements which operated under the 2004 JORC reporting

requirements. Mr Colin Plumridge as a Competent Person consented to the inclusion in the original reports in the form and context in which each appeared, please refer to the Competent Persons declaration above for additional information.

Table 4 Dates and Hyperlinks for previously referred to results in this report

| ASX November 9th 2007 Golden Green Gold Prospect Returns Encouraging Assay                                                      |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| ASX July 25 <sup>th</sup> 2008 Quarterly Report For the period April 1 <sup>st</sup> to June 30 <sup>th</sup> 2008              |  |  |  |
| ASX March 30 <sup>th</sup> 2012 Coherent Gold geochemistry at Yoes Lookout Confirmed – Fifield NSW                              |  |  |  |
| ASX September 17th 2012 First Gold Sections Created at Sorpresa Project, Fifield NSW                                            |  |  |  |
| ASX June 13 <sup>th</sup> 2012 High Grade Gold Intersection Sorpresa Project – Fifield NSW                                      |  |  |  |
| ASX July 26 <sup>th</sup> 2012 Successful Intersections at Sorpresa Gold Project                                                |  |  |  |
| ASX October 10 <sup>th</sup> 2012 Highest Gold and Silver Grades seen to date at Sorpresa Project                               |  |  |  |
| ASX December 18th 2012 Sorpresa Project Produces More Encouraging Results                                                       |  |  |  |
| ASX March 27 <sup>th</sup> 2013 Additional Assays at Sorpresa Gold Project                                                      |  |  |  |
| ASX June 13th 2013 Further Positive RC Drilling Results at Sorpresa Project                                                     |  |  |  |
| ASX July 17th 2013 Diamond Drilling Reveals Bonanza Grade of 1m @ 114g/t Au                                                     |  |  |  |
| ASX October 21st 2013 Results Confirm Extensions of Gold and Silver at Sorpresa Project                                         |  |  |  |
| ASX December 20 <sup>th</sup> 2013 High Grade Silver extensions continue at Roadside                                            |  |  |  |
| ASX February 14th 2014 Gold Intersections Confirm New Intersections at Sorpresa                                                 |  |  |  |
| ASX May 16th May 2014 4,000m RC Drilling Program at Sorpresa Project – Regional Intersection 2m @ 9.11g/t Gold                  |  |  |  |
| ASX May 30 <sup>th</sup> May 2014 Drilling Update and 3D Exploration Model for Sorpresa Project – 2m @ 7.49g/t Gold intersected |  |  |  |
| ASX July 23rd 2014 Encouraging Regional Rock Chip Results up to 13.7g/t Gold, Fifield NSW                                       |  |  |  |
| ASX August 18th 2014 New High Grade Rock Chip Results up to 23g/t Au at Fifield NSW                                             |  |  |  |
| ASX August 26 <sup>th</sup> 2014 Sorpresa Gold and Silver Mineralisation Extended at Fifield, NSW                               |  |  |  |
| ASX November 28th 2014 Encouraging Gold Results Intersected in New Shallow Oxide Position at Sorpresa                           |  |  |  |
| ASX December 8th 2014 High Grades Intersected in Sorpresa Resource Definition Drilling                                          |  |  |  |
| ASX December 23 <sup>rd</sup> 2014 Sorpresa Maiden Resource Fifield NSW – 6.4Mt for 125kOz of gold and 7.9Moz of silver         |  |  |  |
| ASX January 30 <sup>th</sup> 2015 December Quarter Exploration Report                                                           |  |  |  |
| ASX February 20th 2015 Sorpresa RC Drilling Assays Finalised, New RC Drilling underway to extend mineralisation                 |  |  |  |
| ASX February 23 <sup>rd</sup> 2015 Gold Intersections confirmed from Surface at Carlisle, Fifield NSW                           |  |  |  |
| ASX 23rd March 2015 Encouraging Results including 2m @ 10.09g/t Gold Intersected at Sorpresa                                    |  |  |  |
| ASX 13th April 2015 Skarn style mineralisation intersected with Copper Anomalism at Yoes Lookout Prospect                       |  |  |  |
| ASX 20th May 2015 Yoes Area Assays confirm Copper Anomalism with Gold Present                                                   |  |  |  |
| ASX 16 <sup>th</sup> June 2015 RC Drill Assays Confirm Copper Anomalism and Gold at Eclipse Trend                               |  |  |  |
| ASX 23rd July2015 4m @ 6.5% Cu and 2.3g/t Au Massive Chalcopyrite at Eclipse                                                    |  |  |  |
| ASX 26 <sup>th</sup> August 2015 Sorpresa Drilling Continues best intersection of 14m @ 5.24g/t gold & 156g/t silver from 21m   |  |  |  |

## Table 5: JORC Code Reporting Criteria

## Section 1 Sampling Techniques and Data

| Criteria            | JORC Code explanation                                                                                                                                                                                                                                                                                   | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling techniques | channels, random chips, or specific<br>specialised industry standard measurement<br>tools appropriate to the minerals under<br>investigation, such as down hole gamma<br>sondes, or handheld XRF instruments, etc).<br>These examples should not be taken as<br>limiting the broad meaning of sampling. | RC Samples are collected at 1m intervals from<br>the cyclone in plastic bags.<br>RAB Samples are collected at 1m intervals from<br>the cyclone in plastic bags.<br>1 metre intervals are sampled from all Auger<br>holes within in situ weathered basement<br>geology.<br>Nominal 2 kg samples are collected at the drill<br>rig.<br>Rock Chips samples are a mix of float, sub crop<br>& outcrop (identified in results table). |
|                     | appropriate calibration of any measurement tools or systems used.                                                                                                                                                                                                                                       | Industry standard QAQC protocols with<br>insertion of certified reference samples, blank<br>samples and field duplicates are included every<br>25, 51 and 52nd sample respectively.<br>Previously duplicates were every 50                                                                                                                                                                                                       |
|                     | mineralisation that are Material to the<br>Public Report.<br>In cases where 'industry standard' work<br>has been done this would be relatively                                                                                                                                                          | RC Hole collars are surveyed using a Garmin<br>GPS, and Trimble DGPS. Downhole surveying<br>in RC hole is conducted every 20m open hole,<br>and where required every 50m in-rod using<br>stainless steel rods. All other drill and sample<br>locations are surveyed using Garmin GPS.                                                                                                                                            |
| Drilling techniques | Bangka, sonic, etc) and details (e.g. core<br>diameter, triple or standard tube, depth of<br>diamond tails, face-sampling bit or other<br>type, whether core is oriented and if so by                                                                                                                   | Reverse Circulation conducted using<br>face sampling hammer (119mm diameter).<br>RAB drilling conducted using blade bit (100mm<br>diameter).<br>Auger drilling conducted by trailer<br>mounted hydraulic driven auger rig with<br>nominal hole diameter of 100mm.                                                                                                                                                                |

| Criteria                                          | JORC Code explanation                                                                                                                                                                                                                 | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drill sample recovery                             | <ul> <li>Method of recording and assessing<br/>core and chip sample recoveries and<br/>results assessed.</li> </ul>                                                                                                                   | Poor sample recoveries are noted during logging<br>with percentage estimates. These are compared<br>to results.                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                   |                                                                                                                                                                                                                                       | RC samples are visually checked for recovery,<br>moisture and contamination. A cyclone and riffle<br>splitter (for RC) are used to provide a uniform<br>sample and these are routinely cleaned. The<br>hole is<br>blown out at the beginning of each rod to<br>remove excess water, plus auto-<br>blow downs, to maintain dry sample.<br>Auger and RAB samples are visually checked for<br>recovery and up hole contamination. Auger and<br>RAB drilling not conducted below the water<br>table. |
|                                                   | -                                                                                                                                                                                                                                     | In RC drilling occasional poor sample recovery<br>and also wet samples occur however close<br>examination and comparison to results showed<br>that there is no identifiable bias in the results<br>associated with these samples.                                                                                                                                                                                                                                                                |
| Logging                                           | <ul> <li>Whether core and chip samples have<br/>been geologically and geotechnically<br/>logged to a level of detail to support<br/>appropriate Mineral Resource estimation,<br/>mining studies and metallurgical studies.</li> </ul> | Geological logging of drill chips records colour,<br>grainsize, lithology, alteration, mineralisation<br>and veining including percentage estimates<br>along with moisture content. Drill samples are<br>sieved, logged and placed into chip trays.                                                                                                                                                                                                                                              |
|                                                   | <ul> <li>Whether logging is qualitative or<br/>quantitative in nature. Core (or costean,<br/>channel, etc) photography.</li> </ul>                                                                                                    | Geological logging of drill chips is qualitative by<br>nature, drill chip trays are retained for future<br>reference.                                                                                                                                                                                                                                                                                                                                                                            |
|                                                   | <ul> <li>The total length and percentage of<br/>the relevant intersections logged.</li> </ul>                                                                                                                                         | All metres drilled are logged                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sub-sampling techniques<br>and sample preparation | <ul> <li>If core, whether cut or sawn and<br/>whether quarter, half or all core taken.</li> </ul>                                                                                                                                     | No core reported in this release                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Criteria                                                        | JORC Code explanation                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sub-sampling techniques<br>and sample preparation<br>continued. | <ul> <li>If non-core, whether riffled, tube<br/>sampled, rotary split, etc and whether<br/>sampled wet or dry.</li> </ul>                                                            | Reported RC results have been riffle split.<br>Lower priority RC intervals are speared samples<br>and if found to be anomalous will be<br>subsequently riffle split and re-assayed. Wet<br>samples are not put through riffle splitter but<br>homogenized and subsampled using small<br>spear. Sample returned from 1 metre RAB<br>interval is homogenized and speared and<br>composited and maximum composite interval<br>within significant intersection is provided with<br>result. Sample returned from 1 metre auger<br>interval is homogenized in collection tray and<br>speared. All RAB and Auger samples were dry.<br>Rock Chips are sawn in half with half submitted<br>for analysis. |
|                                                                 | <ul> <li>For all sample types, the nature,<br/>quality and appropriateness of the<br/>sample preparation technique.</li> <li>.</li> </ul>                                            | Sub-samples obtained from riffle splitting are<br>submitted as 1m intervals or composited to 2m<br>(equal weights) to produce a bulk 2kg sample,<br>subsamples of occasional wet metres are<br>composited similarly. Lower priority zones are<br>speared and composited on 4m intervals. The<br>homogenization and spearing method<br>is typical for sampling RAB and auger returns<br>and QAQC results identify that the methods<br>used are appropriate to the style of<br>mineralisation.                                                                                                                                                                                                    |
|                                                                 | Quality control procedures adopted for<br>all sub-sampling stages to maximise<br>representivity of samples.                                                                          | Industry standard QAQC protocols with<br>insertion of certified reference samples, blank<br>samples and field duplicates are included every<br>50, 51 and 52nd sample respectively. No wet<br>samples are put through the riffle splitter which<br>is checked between samples and cleaned (when<br>necessary) between samples. Equal weights<br>(estimated from equal volumes) are collected<br>for composited intervals.                                                                                                                                                                                                                                                                       |
|                                                                 | Measures taken to ensure that the<br>sampling is representative of the in situ<br>material collected, including for instance<br>results for field duplicate/second-half<br>sampling. | QAQC results of field duplicate analysis identify<br>that the methods used are appropriate to the<br>style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                 | <ul> <li>Whether sample sizes are appropriate<br/>to the grain size of the material being<br/>sampled.</li> </ul>                                                                    | QAQC results of field duplicate analysis identify<br>that the methods used are appropriate to the<br>style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Criteria                                      | JORC Code explanation                                                                                                                                                                                                                                           | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quality of assay data and<br>laboratory tests | <ul> <li>The nature, quality and<br/>appropriateness of the assaying<br/>and laboratory procedures used<br/>and whether the technique is<br/>considered partial or total.</li> </ul>                                                                            | Reported RC samples are dispatched to ALS Laboratories<br>with Au determined by Au_AA26.<br>RAB and Auger samples are dispatched to ALS<br>Laboratories with Au determined by fire assay methods<br>Au-AA22 (or PGM-ICP24) which returns Au to 2ppb (or 1<br>ppb) respectively, PGM-ICP24 includes Pt to 5 ppb and Pd<br>to 1 ppb on a 50g charge. Selected auger samples were<br>also submitted for full suite multi-element analysis are<br>via Four Acid Digest method ME-MS61.<br>Rock chip samples are submitted to ALS Laboratories for<br>Au via Fire Assay method Au-AA22 to 2 ppb and full suite<br>multi-element analysis are via Four Acid Digest method<br>ME-MS61.<br>Fire Assay analysis for gold and Four Acid digest for<br>multielement analysis are considered as total techniques<br>in the absence of coarse metal. Screen Fire Assay for gold<br>is considered as total technique when coarse gold is<br>present.                                            |
|                                               | • For geophysical tools,<br>spectrometers, handheld XRF<br>instruments (fpXRF), etc, the<br>parameters used in determining<br>the analysis including instrument<br>make and model, reading times,<br>calibrations factors applied and<br>their derivation, etc. | All significant results reported from NATA accredited<br>laboratory.<br><b>Handheld XRF (fpXRF) (Olympus Delta50) is used</b> to<br>determine sample character and type applied to 1m riffle<br>split or composite. All data is collected using a 30<br>seconds reading time (this is sometimes modified to<br>15secs, if stable readings are achievable) for each of the<br>3 beams in soil mode. XRF analysis is typically applied to<br>a single point on the sample bag of interest. Results may<br>be cross checked with additional XRF readings, including<br>further subsamples. The known limitations of XRF,<br>particularly element strengths and weaknesses, are<br>considered. XRF is a scoping and order of magnitude<br>tool, the Company is an expert user of XRF. Trends and<br>comparisons in XRF readings are examined. Laboratory<br>assays may be sought for further validation. XRF results<br>are considered as guidance for subsequent laboratory<br>assay |
|                                               | <ul> <li>Nature of quality control<br/>procedures adopted (e.g.<br/>standards, blanks, duplicates,<br/>external laboratory checks) and<br/>whether acceptable levels of<br/>accuracy (i.e. lack of bias) and<br/>precision have been established.</li> </ul>    | Reviews of internal QAQC results has shown that the<br>field sampling, riffle splitting compositing methods used<br>are appropriate to the mineralisation being tested.<br>External laboratory analysis of "umpire" samples confirm<br>results from the primary laboratory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Criteria                                 | JORC Code explanation                                                                                                             | Commentary                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Verification of sampling<br>and assaying | <ul> <li>The verification of significant<br/>intersections by either independent or<br/>alternative company personnel.</li> </ul> | All reported intersections are independently reviewed by 2 company personnel                                                                                                                                                                                                                                                                         |
|                                          | • The use of twinned holes.                                                                                                       | Hole Twinning when used, is reported.                                                                                                                                                                                                                                                                                                                |
|                                          | entry procedures, data verification, data storage (physical and electronic) protocols.                                            | Primary field data is captured electronically<br>using established templates. Assay data<br>from laboratory is merged and loaded into<br>Access based database after passing QAQC<br>checks. Database audit of loaded batches is<br>conducted on a monthly basis.                                                                                    |
|                                          | <ul> <li>Discuss any adjustment to assay<br/>data.</li> </ul>                                                                     | "<" values are converted<br>into "-" values and for geochemical<br>analysis results returning less than<br>detection are ascribed to half the<br>detection limit.                                                                                                                                                                                    |
| Location of data points                  |                                                                                                                                   | Drill collars are located using handheld<br>Garmin GPS and are RC collars are picked<br>up by a Trimble Differential GPS.<br>Downhole digital multi-shot surveys are<br>conducted every 20m, open hole where<br>practical, or in stainless steel rods every<br>50m.                                                                                  |
|                                          | Specification of the grid system used.                                                                                            | GDA94 zone55                                                                                                                                                                                                                                                                                                                                         |
|                                          | <ul> <li>Quality and adequacy of<br/>topographic control.</li> </ul>                                                              | Collar elevation data from digital terrain<br>model derived from detailed ground<br>gravity survey DGPS data used as an<br>interim measure prior to DGPS pick up of<br>collar location. Other elevation data<br>sourced from handheld GPS.                                                                                                           |
| Data spacing and<br>distribution         | Exploration Results.                                                                                                              | RC Exploration was on nominal 80 X<br>100m grid down to 40 X 40m grid and<br>then down to 20 X 20m grid, or as<br>described.<br>RAB exploration conducted on traverses<br>with coverage on 60 ° dipping holes.<br>Auger exploration currently on a nominal<br>100 X 20m grid or as described. Rock<br>Chip samples not on a defined grid<br>pattern. |

| Criteria                            | JORC Code explanation                                                                                                                                                                                                                          | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data spacing and                    | · Whether the data spacing and                                                                                                                                                                                                                 | The nominal RC exploration grid is                                                                                                                                                                                                                                                                                                                                                                                              |
| distribution continued.             | distribution is sufficient to establish the<br>degree of geological and grade continuity<br>appropriate for the Mineral Resource and                                                                                                           | deemed adequate to identify<br>mineralisation envelopes which are<br>infilled as appropriate. The RAB hole spacing<br>and nominal auger exploration grid are<br>deemed most suitable to identify<br>mineralisation at a scale of interest to the<br>company. This is adequate to establish<br>continuity in this environment however<br>closer spaced drilling may be warranted in<br>certain locations for further definition. |
|                                     | • Whether sample compositing has been applied.                                                                                                                                                                                                 | Compositing conducted at 2 and 4<br>meter intervals in RAB and RC samples.<br>Equal weights from each 1 meter<br>interval are used to ensure that the<br>composite adequately represents the<br>intervals sampled. The equal weights<br>are estimated from equal volume<br>measure used when subsampling.<br>Auger samples are taken on 1 metre<br>intervals.                                                                   |
| Orientation of data in              | · Whether the orientation of sampling                                                                                                                                                                                                          | Current observations do not suggest a                                                                                                                                                                                                                                                                                                                                                                                           |
| relation to geological<br>structure | achieves unbiased sampling of possible<br>structures and the extent to which this is<br>known, considering the deposit type.                                                                                                                   | bias in sampling from the drilling<br>orientation.                                                                                                                                                                                                                                                                                                                                                                              |
|                                     | <ul> <li>If the relationship between the drilling<br/>orientation and the orientation of key<br/>mineralised structures is considered to have<br/>introduced a sampling bias, this should be<br/>assessed and reported if material.</li> </ul> | The drilling orientation is designed to intercept the mineralisation orthogonally where known.                                                                                                                                                                                                                                                                                                                                  |
| Sample security                     | <ul> <li>The measures taken to ensure<br/>sample security.</li> </ul>                                                                                                                                                                          | Sample identification is independent of<br>hole identification. Samples are stored in a<br>secure on- site location, under supervision<br>and transported to ALS Orange NSW via<br>Rimfire personnel or licensed couriers.                                                                                                                                                                                                      |
| Audits or reviews                   |                                                                                                                                                                                                                                                | Internal reviews of QAQC data has shown<br>that the field sampling, riffle splitting and<br>compositing methods used are<br>appropriate to the mineralisation being<br>tested.                                                                                                                                                                                                                                                  |

# Section 2 Reporting of Exploration Results

| Criteria                                   | JORC Code explanation                                                                                                                                                                                                                                                                                                        | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral tenement and<br>land tenure status | <ul> <li>Type, reference name/number,<br/>location and ownership including<br/>agreements or material issues with<br/>third parties such as joint ventures,<br/>partnerships, overriding royalties,<br/>native title interests, historical sites,<br/>wilderness or national park and<br/>environmental settings.</li> </ul> | Reported results all from 100% Rimfire Pacific<br>Mining NL tenements at Fifield NSW, which may<br>include EL5534, EL6241, EL7058, EL7959, EL5565,<br>MC(L)305, MC(L)306.<br>All samples were taken on Private Freehold and /<br>or Common Land (prescribed for mining).<br>No native title exists.<br>The land is used primarily for grazing and<br>cropping.                                                                                                                                                                                          |
|                                            | •The security of the tenure held at the<br>time of reporting along with any<br>known impediments to obtaining a<br>license to operate in the area.                                                                                                                                                                           | The tenement is in good standing, and all work is conducted under specific approvals from NSW Trade and Investment, Mineral Resources.                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Exploration done by other parties          | <ul> <li>Acknowledgment and appraisal<br/>of exploration by other parties.</li> </ul>                                                                                                                                                                                                                                        | Recent systematic exploration (1980 onwards)<br>has been conducted by Ausplat Minerals NL in<br>JV with Golden Shamrock Mines Ltd and Mount<br>Gipps Ltd, Titan Resources and also Helix<br>Resources and Black Range Minerals NL. Prior<br>to this Exploration for various metals in the<br>Fifield area has been conducted by a number of<br>companies since the late 1960's including<br>Anaconda, CRA Exploration Pty Ltd, Platina<br>Developments NL, Mines Search Pty Ltd, Broken<br>Hill Proprietary Company Ltd, Mt Hope Minerals<br>and Shell. |
| Geology                                    | <ul> <li>Deposit type, geological setting<br/>and style of mineralisation.</li> </ul>                                                                                                                                                                                                                                        | The mineralisation currently being pursued at<br>Sorpresa appears to have many similarities with<br>typical carbonate base metal epithermal gold<br>style, in a Siluro Devonian back arc basin setting.<br>Other mineralisation styles include sediment and<br>greenstone hosted orogenic gold and VMS.                                                                                                                                                                                                                                                 |
| Drill hole Information                     | material to the understanding of the exploration results including a tabulation of the following                                                                                                                                                                                                                             | Plans showing location of drill holes and also<br>location of significant results and interpreted<br>trends are provided in the figures of report.<br>Any new significant RC results are provided in<br>tables within the report.<br>Any new significant RAB results are provided in<br>tables in within the report.                                                                                                                                                                                                                                    |

| Criteria                                                               | JORC Code explanation                                                                                                                                                                                                                                                                           | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drill hole Information<br>Continued.                                   | dip and azimuth of the hole                                                                                                                                                                                                                                                                     | Any new significant rock chip results are provided in tables within the report.                                                                                                                                                                                                                                                                                                                                                             |
|                                                                        | down hole length and interception<br>depth                                                                                                                                                                                                                                                      | Any new significant Auger results are provided in figures within the report.                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        | <ul> <li>If the exclusion of this<br/>information is justified on the basis<br/>that the information is not Material<br/>and this exclusion does not detract<br/>from the understanding of the<br/>report, the Competent Person<br/>should clearly explain why this is the<br/>case.</li> </ul> | Information is provided in significant results<br>tables.                                                                                                                                                                                                                                                                                                                                                                                   |
| Data aggregation methods                                               | In reporting Exploration Results,<br>weighting averaging techniques,<br>maximum and/or minimum grade<br>truncations (e.g. cutting of high<br>grades) and cut-off grades are<br>usually<br>Material and should be stated.                                                                        | No averaging or cut-off values are applied to<br>auger or rock chip results. Only significant RAB<br>results >0.1g/t Au are reported using thickness<br>weighted average for intervals with < or = 2m<br>internal dilution. For RC results thickness<br>weighted averages are reported for all<br>intervals. Reported intervals are calculated<br>using $\geq$ 0.1g/t Au and or $\geq$ 10g/t Ag cut off and<br>$\leq$ 2m Internal Dilution. |
|                                                                        | • Where aggregate intercepts<br>incorporate short lengths of high<br>grade results and longer lengths<br>of low grade results, the<br>procedure used for such<br>aggregation should be stated and<br>some typical examples of such<br>aggregations should be shown in<br>detail.                | High grade intervals within in larger<br>intersections are reported as included intervals<br>and noted in results table. Aggregation utilises<br>thickness weighted mean calculations.                                                                                                                                                                                                                                                      |
|                                                                        | <ul> <li>The assumptions used for any<br/>reporting of metal equivalent<br/>values should be clearly stated.</li> </ul>                                                                                                                                                                         | Metal equivalents are not reported.                                                                                                                                                                                                                                                                                                                                                                                                         |
| Relationship between<br>mineralisation widths and<br>intercept lengths | <ul> <li>These relationships are<br/>particularly important in the<br/>reporting of Exploration Results.</li> </ul>                                                                                                                                                                             | Drill holes are designed to intersect the plane of<br>mineralisation (where this is known) at 90° so<br>that reported intersections represent true<br>thickness.                                                                                                                                                                                                                                                                            |
|                                                                        | <b>o</b> ,                                                                                                                                                                                                                                                                                      | All intersections are subsequently presented as<br>downhole lengths. If down hole length varies<br>significantly from known true width then<br>appropriate notes are provided.                                                                                                                                                                                                                                                              |

| Criteria           | JORC Code explanation                  | Commentary                                          |
|--------------------|----------------------------------------|-----------------------------------------------------|
| Diagrams           |                                        | Refer to Figures                                    |
|                    | (with scales) and tabulations of       |                                                     |
|                    | intercepts should be included for      |                                                     |
|                    | any significant discovery being        |                                                     |
|                    | reported These should include, but     |                                                     |
|                    | not be limited to a plan view of drill |                                                     |
|                    | hole collar locations and              |                                                     |
|                    | appropriate sectional views.           |                                                     |
| Balanced reporting | · Where comprehensive                  | This information is provided in results Table and   |
|                    | reporting of all Exploration Results   | comments in the report.                             |
|                    | is not practicable, representative     |                                                     |
|                    | reporting of both low and high         |                                                     |
|                    | grades and/or widths should be         |                                                     |
|                    | practiced to avoid misleading          |                                                     |
|                    | reporting of Exploration Results.      |                                                     |
| Other substantive  | · Other exploration data, if           | There is currently no other substantive             |
| exploration data   | meaningful and material, should be     | exploration data that is meaningful and material    |
|                    | reported including (but not limited    | to report, beyond that reported already, in this or |
|                    | to): geological observations;          | previous reports.                                   |
|                    | geophysical survey results;            |                                                     |
|                    | geochemical survey results; bulk       |                                                     |
|                    | samples – size and method of           |                                                     |
|                    | treatment; metallurgical test results; |                                                     |
|                    | bulk density, groundwater,             |                                                     |
|                    | geotechnical and rock                  |                                                     |
|                    | characteristics; potential deleterious |                                                     |
|                    | or contaminating substances.           |                                                     |
| Further work       | · The nature and scale of              | Further work is discussed in the document in        |
|                    | planned further work (e.g. tests for   | relation to the exploration results.                |
|                    | lateral extensions or depth            |                                                     |
|                    | extensions or large-scale step-out     |                                                     |
|                    | drilling).                             |                                                     |
|                    |                                        |                                                     |
|                    |                                        |                                                     |
|                    | · Diagrams clearly highlighting the    | Refer to Figures                                    |
|                    | areas of possible extensions,          |                                                     |
|                    | including the main geological          |                                                     |
|                    | interpretations and future drilling    |                                                     |
|                    | areas, provided this information is    |                                                     |
|                    | not commercially sensitive.            | 1                                                   |